
© Softrel, LLC 2020

Software Failure Modes
Effects Analysis

Overview

© Softrel, LLC 2020 2

Copyright

• This presentation is copy protected
and licensed to one person who has
registered for the class

• You may not
• Use any part of this presentation

in a derivative work including but
not limited to presentations,
conferences, published articles or
books, theses, etc.

• Convert this presentation to any
other format other than PDF.

• Violators will be prosecuted to the
fullest extent of the law

© Softrel, LLC 2020 3
Additional information

• “Effective Application of
Software Failure Modes Effects
Analysis” book.

• The SFMEA toolkit contains a
complete list of software failure
modes and root causes

© Softrel, LLC 2020 4

About Ann
Marie
Neufelder

• Has been developing software and managing software
engineers since 1984

• Has been applying software failure modes effects
analysis since 1986 on complex software intensive
engineering systems

• Has conducted numerous software FMEAs in medical,
defense, space, energy and electronics industries

• Has reviewed numerous software FMEAs for large
organizations acquiring software intensive systems

• Has read more than 200,000 software problem reports
and assessed the failure mode and root cause of each

• Has identified more than 400 failure mode/root cause
pairs for software

• Wrote the SFMEA webinar for NASA

• Has seen the good, bad and ugly with regards to
effective software FMEAs

• Chair-person for the IEEE 1633 Recommended Practices
for Software Reliability, 2016

• Published current industry guidance for software failure
modes effects analysis as referenced by IEEE 1633 and
SAE TAHB0009

• Invented the only industry accepted method to predict
the number of software failures before the code is even
written

7/25/2020

© Softrel, LLC 2020

© Softrel, LLC 2020 6

• The increase in size of F16A to F35 is just one example[1]
• With increased size comes increased complexity and

increased failures due to software

1.0 Introduction

0

5000000

10000000

15000000

20000000

25000000

30000000

1970 1980 1990 2000 2010 2020

SIZE IN SLOC OF FIGHTER AIRCRAFT SINCE
1974

[1] Delivering Military Software Affordably, Christian Hagen and Jeff Sorenson, Defense AT&L, March-April 2012.

© Softrel, LLC 2020 7

• Addressing one failure mode could mean eliminating several failures
• i.e. if the software engineers failed to consider what the software shall do when there is a

hardware fault, this effects all hardware interfaces which can have wide reaching effect

• The SFMEA output can be used for any of these purposes
• Develop better software requirements and/or make requirements reviews

more effective
• Abnormal behavior/alternative flows that might be missing from the requirements or

design specifications
• Unwritten assumptions

• Develop a better design and/or make design reviews more effective
• Features that need fault handling design
• Defects that easier to see when looking at the design or code but difficult to see during

testing

• Design a health management system (HMS) or Built In Test (BIT)
• Identify defects that cannot be addressed by redundancy or other hardware controls

• Develop a test plan that tests for more than the happy day scenarios
• Identify tests that find failures as opposed to confirm requirements
• Identify failures in systems that are difficult or expensive to test (i.e. spacecraft, missiles,

medical equipment, etc.)

• Develop software/supporting documentation that minimizes user error

1.0 Introduction

© Softrel, LLC 2020 8

• Treating the software as it’s a black box –Early guidance on software FMEA recommended
the black box approach which doesn’t provide value. The functional viewpoint has proven
effectiveness.

• Assigning the analysis to someone who’s not a software engineer. Reliability engineers
may facilitate but software engineers understand the failure modes.

• Assuming the software will work. Instead, one must assume that:
• Specifications are missing something crucially important
• Specifications are incorrect
• Specifications are sufficient but design/code doesn’t address them

• Not having sufficient written specifications
• SFMEAs are much more effective when conducted on use cases and design than high

level requirements

• Trying to analyze everything
• Most productive when they focus on riskiest software, riskiest functions, with most

likely failure modes. More effective when preceeded by a root cause analysis.

• Conducting the analysis too early or too late

• Spending too much time spent assessing likelihood.
• SFMEAs are NOT used to calculate failure rates. Once root cause of failure mode is

removed correctly, failure event doesn’t recur. That’s different than for hardware.

1.0 Introduction

© Softrel, LLC 2020 9

• The sources of all software faults lie in the below three basic sources

• Software FMEA analyst must understand and consider all three sources

• It’s common for SFMEAs to assume that all software specifications are both complete
and correct and that requirements based testing will find all defects

• The only thing that can be assumed is that the customer specification is correct

1.0 Introduction

Top level software fault Why its not found prior to operation

The software specifications are
missing crucially important
details

These aren’t found in requirements based testing
because only the written part is tested.

The software specifications are
themselves faulty and hence the
code is faulty.

These are found in requirements based testing
because the code does what the stated requirement
says

The software engineer may not
always write the code as per the
written specifications
• Some specifications aren’t

coded at all.
• Some specifications are

coded incorrectly.

• These faults can happen with very large systems
and/or insufficient traceability.

• These can get through requirements based testing
undetected if the code works with some inputs but
not others

© Softrel, LLC 2020 10

• Faulty functionality
• Software does the wrong thing
• Software fails to do the right thing
• Software feature is overengineered

• Faulty error handling - Inability to detect and
correctly recover from

• Computational faults
• Faults in the processor
• Memory faults
• Environment faults (Operating system)
• Hardware faults
• Power faults
• Power not checked on startup or power down
• Faulty I/O

• Faulty sequences/state
• Missing safe state and/or return to safe state
• Prohibited state transitions allowed

• Faulty timing
• Race conditions
• Timeouts are too big or too small
• Software takes too long to execute and misses

timing window

• Faulty data handling
• Data and interface conflicts
• Insufficient handling of invalid data

• Faulty algorithms
• Crucially important algorithm isn’t specified
• Algorithm is specified incorrectly

• Faulty logic
• Control flow defects
• Faulty comparison operators

• Faulty usability
• Insufficient positive feedback of safety and

mission critical commands
• Critical alerts aren’t obvious

• Faulty processing
• Software behaves erratically or can’t start

after a loss of power or user abort

• Endurance/peak load
• Safety and mission are degraded when

system remains on for extended period of
time

• Operational status isn’t monitored
Copyright Softrel, LLC 2019

1.0 Introduction

© Softrel, LLC 2020 11

• Severity depends on the feature that has the failure mode
• All software failure modes can result in catastrophic failure and all can result in a non-critical failure.
• If a mission critical feature has one of these failure modes the effect will generally be severe,

however, non-mission critical features encountering these failure modes may still have a severe
consequence.

• Likelihood depends on the application type and the development practices

1.0 Introduction

Failure mode When it’s more likely

Faulty functionality Common if the software requirements are too high level

Faulty error
handling

Most common for nearly every organization because software engineers almost never
consider failure space

Faulty
sequences/state

More likely if the software engineers don’t do detailed state design at the lower levels and
highest level

Faulty timing More likely if there aren’t timing diagrams

Faulty data handling More likely if there aren’t well defined software interface design documents and data
definitions

Faulty algorithms Applies to mathematically intensive systems

Faulty logic Common for all software systems and is due to insignificant logic design at the lower levels

Faulty usability Common if the user has to make quick decisions that are important

Faulty processing Most common for systems that may encounter interrupted power supply

Endurance issues Most visible for systems that do have an uninterrupted power supply

Peak loading issues Applies to systems that can be used by more than one end user at the same time

© Softrel, LLC 2020 12

• Faulty error handling – Apollo 11 lunar landing, ARIANe5, Quantas flight 72, Solar
Heliospheric Observatory spacecraft, Denver Airport, NASA Spirit Rover (too
many files on drive not detected)

• Faulty data definition - Ariane5 explosion 16/64 bit mismatch, Mars Climate
Orbiter Metric/English mismatch, Mars Global Surveyor, 1985 SDIO mismatch,
TITANIV wrong constant defined

• Faulty logic– AT&T Mid Atlantic outage in 1991
• Faulty timing - SCUD missile attack Patriot missile system, 2003 Northeast

blackout
• Race condition - Therac 25

• Peak load conditions - Affordable Health Care site launch
• Faulty usability

• Too easy for humans to make mistakes – AFATDS friendly fire, PANAMA city
over-radiation

• Insufficient positive feedback of safety and mission critical commands – 2007
GE over-radiation

The above illustrates that history keeps repeating itself because people assume
root causes from other industries/applications are somehow not applicable.

Lesson to be learned – the root causes are applicable to all software. It’s the
hazards/effects that result from the root causes that are unique

Copyright Softrel, LLC 2019

1.0 Introduction

© Softrel, LLC 2020 13

Loss of $370 million payload
On June 4th, 1996 launch vehicle veered off course
and self-destructed 37 seconds into the flight, at an
altitude of 4km and a distance of 1km from the
launch pad.
Guidance system shut down and passed control to
an identical redundant unit which had the identical
software defect.
Unnecessary course correction.
Primary defect–Faulty data - The guidance system’s
computer attempted to convert the sideways velocity of
the rocket from a 64 bit format to a 16 bit format. The
result was an overflow.

Related defect- Faulty error handling -The guidance
software had not been designed to trap for overflows
because it was thought that the overflow could never
happen.

Related defect- One size fits all error handling. When the
overflow occurred the computer reboot by design. It
should handled the fault differently.

1.0 Introduction

Example of mismatched
size formats from past
history [ARIANE5]

© Softrel, LLC 2020 14

Whether the life cycle model is waterfall, incremental, spiral, etc.
The best time to do the particular SFMEA is shown above. With
incremental models, there may be more than one iteration.

1.0 Introduction

SW increment 1 SW increment 2 SW increment n…

Within an increment
some or all of these
Activities take place

SW Requirements

SW Design

SW Implementation
and unit testing

SW Integration Testing

SW SystemTesting

SystemTesting
Final

SystemTesting
…

Serviceability
SFMEA for
update and

install scripts

Maintenance
generally once

software is
deployed

Functional, Usability

Interface

Detailed ,
Vulnerability

© Softrel, LLC 2020

Prepare Software FMEA
Define scope Tailor the SFMEA

Generate
CILMitigate

Analyze failure modes and
root causes

Identify
resources

Identify
equivalent

failure
modes

Identify
consequences

Identify local/
subsystem/

system
failure effects

Identify
severity

and likelihood

Identify
corrective

actionsIdentify
controls

Identify
compensating

provisions

Analyze applicable
failure modes

Identify root causes(s)
for each failure mode

Generate a
Critical

Items List
(CIL)

Identify
boundary

Set
ground

rules

Select
View

points

Identify
what can
go wrong

Gather
artifacts

Define
likelihood

and
severity

Select
template

and
tools

Revise RPN

Identify
riskiest

functions

For each
use case, use case steps,

SW requirement, interfaces,
detailed design, user manuals,

Installation scripts …
(as applicable based

on selected view point)

© Softrel, LLC 2020 16

1. The software engineer will not write code that’s not specified.
2. The software test engineers may test the written

requirements but won’t test what’s not in writing.
3. The software engineer may not always write the code as per

the stated requirements or specifications.
• It cannot be assumed that even when requirements are complete and

unambiguous that the code will be written correctly.

4. The software engineer may “guess” if presented with more
than one option for implementing a requirement.

• The wrong guess can result in code that causes a system failure.

5. It cannot be assumed that “thorough testing” will uncover all
software failures prior to operation.

6. The failure modes from a past similar system are likely to be
relevant for the current system

2.0 Prepare for the SFMEA

© Softrel, LLC 2020 17

This is a specification pertaining to the initialization of a system:
The software shall check for voltages within <x> and <y>
• There are no other statements regarding the voltages.
• The software development plan indicates that there will be “requirements”

based testing. There is no indication of stress testing or fault injection testing.
This is what’s wrong…
• The software specification doesn’t say what the software shall do if the voltages

are out of range.
• The software specification doesn’t explicitly say that the software does not

continue if voltages are out of range.
• Technically the specification is passed if the software checks the voltages regardless

of what it does when the voltages are out of range.
• Hence there’s no reason to believe that there will be code to handle what

happens if the voltages aren’t within <x> and <y>.
• Since there is only requirements based testing it is very likely that voltages out

of range won’t be tested.
This is what can happen if the voltages are out of range…
• The initialization completely stops (this is called a dead state)
• The initialization proceeds to the next state when it should not (this is called an

inadvertent state transition) Copyright Softrel, LLC 2019

2.0 Prepare for the SFMEA

© Softrel, LLC 2020 18

This is the specification for the logging feature for a mission and
safety critical system:
1) The software shall log all warnings, failures and successful missions.
2) At least 8 hours of operation shall be captured
3) Logging to an SD card shall be supported in addition to logging to the

computer drive
This is what you know about the software organization and software
itself
1) Logging function will be called from nearly every use case since

nearly every use case checks for warnings, failures and successes
2) Testing will cover the requirements. But no plans to cover stress

testing, endurance testing, path testing, fault insertion testing.
3) Software engineers have discretion to test their code as they see fit.
4) There is a coding standard but there is no enforcement of it through

automated tools and code reviews only cover a fraction of the code

2.0 Prepare for the SFMEA

© Softrel, LLC 2020 19

• These are the faults that can/will fall through the cracks
• No checking of read/write errors, file open, file exist errors which are

common
• No rollover of log files once drive is full (may be beyond 8 hours)
• No checking of SD card (not present, not working)
• Logging when heavy usage versus light or normal usage (might take

less than 8 hours to fill drive if heavy usage)
• Is both SD card and drive to be written to or does user select?

• This is why these faults aren’t found prior to operation
• No one is required to explicitly test these faults/scenarios
• No one is required to review the code for this fault checking
• No one is required to test beyond 8 hours of operation

• This is the effect if any of these faults happens
• Entire system is down because it crashes on nearly every function once

drive is full, SD card removed, file is open or read/write errors

• When conducting a SFMEA one cannot assume that best practices
will be followed unless there is a means to guarantee that

2.0 Prepare for the SFMEA

© Softrel, LLC 2020 20

• Even if previously discussed issues are specified - these things
can happen with the logging function due to coding mistakes

• logs the wrong status
• fails to log any status
• takes too long to log the status (log file has stale timestamps)
• logs corrupt data
• deletes the entire log file
• fails to acquire 8 hours of operation under any scenario

2.0 Prepare for the SFMEA

© Softrel, LLC 2020 21

FMEA When this viewpoint is relevant

Functional Any new system or any time there is a new or
updated feature/use case/requirements/design.

Interface Anytime there is complex hardware and software
interfaces or software to software interfaces.

Detailed Almost any type of system is applicable. Most
useful for mathematically intensive functions.

Maintenance An older legacy system which is prone to errors
whenever changes are made.

Usability Anytime user misuse can impact the overall
system reliability.

Serviceability The software is mass distributed and remotely
installed/updated as opposed to installed in a
factory, authorized service personnel or controlled
environment.

2.0 Prepare for the SFMEA

© Softrel, LLC 2020 22

analyze what
the software does

• Hardware FMECA focuses on the configuration items.
Software FMECA is less effective with that approach.

• Focus should be on what the software is required to do and not
the CSCI unit itself.

• A CSCI typically performs dozens, hundreds or even
thousands of functions so the below is too open ended

Common Viewpoint Mistake

LRU Failure mode Recommendation

Executive
CSCI

CSCI fails to
execute

Doesn’t address states, timing, missing
functionality, wrong data, faulty error
handling, etc.

Executive
CSCI

CSCI fails to
perform required
function

CSCI performs far too many features and
functions. List each feature and what can
go wrong instead.

2.0 Prepare for the SFMEA

© Softrel, LLC 2020 23

• Common but ineffective approach - Analyze every software
CSCI against total failure of that CSCI to execute

• Hardware engineers assume that since hardware fails when it
wears out or breaks that software failures when it doesn’t
execute at all

• Sounds good-but history shows that the most serious hazards happen
when the software is running

• Your book has many real world examples
• If the software doesn’t execute at all that’s likely to be identified in

testing hence this is akin to a “Captain Obvious” failure mode

• The concept of a partial failure causing a total system failure is
often difficult for hardware/systems engineers to grasp

Common Viewpoint Mistake
2.0 Prepare for the SFMEA

© Softrel, LLC 2020 24
Common Viewpoint Mistake

System
requirements

Software
requirements

Software interface
design

Software design – state
diagrams, timing diagrams,

sequence diagrams, DB design,
GUI design

Module and class design

Line of code

Functions, procedures (code)

Not enough
coverage across

the software and
not enough
coverage of

design or
software only
requirements

Analyzing one
line of code at a

time has
potential to miss

the design and
requirements
related faults.
Won’t work for

code that’s
“missing”.

2.0 Prepare for the SFMEA

© Softrel, LLC 2020 25

Functional root causes Process related root causes

Data conversion from 64 to
16 bit

• Faulty assumption that since code didn’t change from
ARIANE4 then it is OK for ARIANE5. In fact preparation
sequence and workload were different from ARIANE5 than
ARIANE4. ARIANE 5 could handle a heavier payload.

• Insufficient review of existing design against new ARIANE5
environment.

Conversion error
unprotected (not handled)

• Faulty assumption that since overflow didn’t happen on
ARIANE4 it is “impossible” for ARIANE5.

• Since there were no controls for overflow “impossible” was
wrong assessment.

One size fits all defect
exception handling -
Software shut down when
unhandled events detected

• No requirement for ARIANE5 for the protection of the
unhandled conversion.

• Since only requirements are tested, no tests new
environment or for overflow were run in simulation

• Functional root cause – defect in the software requirements, specifications, design,
code, interface, usability, etc.

• Process root cause – the reason why the software product root causes weren’t
detected or mitigated prior to system failure

• Example – Ariane 5 disaster 1996

Common Viewpoint Mistake
2.0 Prepare for the SFMEA

© Softrel, LLC 2020 26

Contrary to popular myth it’s not feasible to conduct a software FMEA on
all of the software. Even small applications have thousands of lines of code and
countless combinations of inputs.

Some options:

1. Broad and shallow
• Choose one or two known common failure modes and apply them

throughout the mission and/or safety critical software specifications/use
cases.

• Example: There have been many problems with alternative flows and
handling of faulty hardware, computations, input/output, etc. Apply “missing
fault handling” to every mission and safety critical use case.

2. Deep and narrow
• Choose the most critical function or use case and analyze it against every

applicable software failure mode
• Example: A missile must be ejected so as to not hit the platform that

launched it. The specifications related to the initial ejection are analyzed
against faulty state, sequences, timing, data, error handling.

2.0 Prepare for the SFMEA

© Softrel, LLC 2020 27

Software FMEA is not a “one person” activity. Inputs from software and
systems engineering are required.
Reliability engineers who haven’t developed software cannot perform the
analysis effectively by themselves.

2.0 Prepare for the SFMEA

Software
engineering

Systems
engineering

SFMEA
facilitator

Brainstorm what can go
wrong/past failure modes

x x x

Gather all use cases/
identify riskiest

x x x

Tailor the SFMEA x
Analyze failure modes x x
Analyze consequences x x x
Identify mitigations x x x
Execute mitigations x
Create CIL x

© Softrel, LLC 2020

Prepare Software FMEA
Define scope Tailor the SFMEA

Generate CILMitigate
Analyze failure modes and root

causes

Identify
resources

Identify
equivalent

failure
modes

Identify
consequences

Identify local/
subsystem/

system
failure effects

Identify
severity

and likelihood

Identify
corrective

actionsIdentify
controls

Identify
compensating

provisions

Analyze applicable
failure modes

Identify root causes(s)
for each failure mode

Generate a
Critical

Items List
(CIL)

Identify
boundary

Set
ground

rules

Select
View

points

Identify
what can
go wrong

Gather
artifacts

Define
likelihood

and
severity

Select
template

and
tools

Revise RPN

Identify
riskiest

functions

For each
use case, use case steps,

SW specifications, interfaces,
detailed design, user manuals,

Installation scripts …
(as applicable based

on selected view point)

© Softrel, LLC 2020 293.0 Analyze failure modes and root causes
Fa

ilu
re

 M
od

e
N

o.

So
ft

w
ar

e
Ite

m
 U

nd
er

 C
on

si
de

ra
tio

n

So
ft

w
ar

e
Ite

m
 F

un
ct

io
na

lit
y

D
es

ig
n

Re
qu

ire
m

en
t (

Re
qu

ire
m

en
t I

D
 ta

g)

Po
te

nt
ia

l F
ai

lu
re

 M
od

e

Po
te

nt
ia

l R
oo

t C
au

se

Po
te

nt
ia

l E
ff

ec
t(

s)
 o

f F
ai

lu
re

Ef
fe

ct
 L

ev
el

 (E
)

D
et

ec
tio

n
M

et
ho

d(
s)

O
cc

ur
re

nc
e

Le
ve

l o
f F

ai
lu

re
 M

od
e

(O
)

D
et

ec
tio

n
Le

ve
l o

f F
ai

lu
re

 M
od

e
(D

)

Ri
sk

 P
rio

rit
y

N
um

be
r (

RP
N

)

So
ft

w
ar

e
CT

Q
 (D

es
ig

n
D

et
ai

ls
)

CT
Q

 R
at

io
na

le

Re
co

m
m

en
de

d
A

ct
io

n(
s)

Re
sp

on
si

bl
e

In
di

vi
du

al
(s

) /
 F

un
ct

io
n(

s)

Ta
rg

et
 C

om
pl

et
io

n
D

at
e

A
ct

io
n(

s)
 T

ak
en

Re
si

du
al

 E
ff

ec
t L

ev
el

 (E
)

Re
si

du
al

 O
cc

ur
re

nc
e

Le
ve

l (
O

)

Re
si

du
al

 D
et

ec
tio

n
Le

ve
l (

D
)

Re
si

du
al

 R
is

k
Pr

io
rit

y
N

um
be

r (
RP

N
)

Sy
st

em
 H

az
ar

d
ID

(s
)

© Softrel, LLC 2020 303.0 Analyze failure modes

Viewpoint Sub-view Failure modes/root causes
Functional What can go wrong with

most or all of the
specifications?

Missing crucially important details,
overengineered, under-engineered,
Missing error handling, one size fits all
error handling, wrong error recovery, no
recovery, missing essential timing
requirements, missing fault state, missing
transitions to fault state, prohibited states
allowed, implied dead states

What can go wrong with a
feature?

What can go wrong with a
specific specification?

Interface What can go wrong
between two components?

Conflicting units of measure, type, size.
Unable to handle corrupt, missing or null
data.

Detailed,
maintenance

What can go wrong with
the detailed design for a
module. What can go
wrong when the module is
changed after a baseline.

Algorithms themselves are faulty or are
implemented faulty. Faulty logic, faulty
sequences, faulty data definition, faulty
error handling, faulty I/O

Usability What can go wrong with
the user?

Unnecessary fill in the blanks, faulty
assumption user is always there or looking
at software, overly cumbersome

© Softrel, LLC 2020 31

• Each of the viewpoints has templates which facilitate analysis
at that viewpoint with most relevant and likely failure modes
and root causes

• HIGHLY recommended –Convert text based specifications to
flow, sequence, state transition, timing diagrams when
analyzed

• MUCH easier to see the failure modes and root causes when
there is a diagram or table

• In this presentation the functional viewpoint is presented

3.0 Analyze failure modes

© Softrel, LLC 2020 32

• This is a typical text based software design
• The software shall Initialize
• The software shall execute <Process A>
• The software shall execute <Process B>
• The software shall execute <Process C>

• In writing there doesn’t appear to be anything
wrong

• However, when it’s illustrated as a flow it’s clear
that some things are missing from specification

• Initialization may not be successful
• Process A may not be successful
• Process B may not be successful
• Process C may not be successful
• Do previous processes have to be successful for

next one to execute?
• What should software do if any of these tasks

are not successful?

Copyright Softrel, LLC 2019

More pictures – more efficiency
3.0 Analyze failure modes

© Softrel, LLC 2020 33

• Text based software design specification
• The software shall Initialize.
• If initialization is unsuccessful the software will

make X attempts to initialize.
• If initialization not successful after x attempts the

software shall log an error.
• The software shall execute <Process A>. If not

successful it shall log an error.
• The software shall execute <Process B>. If not

successful it shall log an error.
• The software shall execute <Process C>. If not

successful it shall log an error.
• These are the problems which are easily to see in

diagram form
• Errors are logged but there is no action defined

beyond that
• As written the software will simply stop at the first

error event
• This is a very common problem within and outside

of defense industry
• It’s due to very little thinking about the failure

scenarios
• This is also an example of “one size fits all” error

handling.
• If error – log event.
• Not applicable for all errors.

Copyright Softrel, LLC 2019

More pictures – more efficiency
3.0 Analyze failure modes

© Softrel, LLC 2020 34

• Text based software design specification
• The software shall Initialize.
• If initialization is unsuccessful the

software will make X attempts to
initialize.

• If initialization not successful after x
attempts the software shall log an
error.

• The software shall execute <Process
A>. If not successful it shall log an error.

• The software shall execute <Process
B>. If not successful it shall log an error.

• The software shall execute <Process
C>. If not successful it shall log an error.

• These are the problems which are easier
to see in a diagram

• In this example, order doesn’t matter
for process A, B or C.

• If not stated as such, the code might be
written to require sequential
processing which might result in timing
requirements not being met.

• Similarly the reverse can happen if the
specification is not clear.

Copyright Softrel, LLC 2019

More pictures – more efficiency
3.0 Analyze failure modes

© Softrel, LLC 2020 35

The “Not operational” state is the missing safe state. The transitions to it are the
safe state returns. If the system cannot revert back when the faulted state is
entered that’s an example of no fallback or recovery. (In this example it should
transition back to initialization)

Initializing

Remote
operations

Online
operations

Pre-
launch

Launch

Not
operational

Copyright Softrel, LLC 2019

More pictures – more efficiency
3.0 Analyze failure modes

© Softrel, LLC 2020 36

A system has a set of
3 lights modeled after
a traffic light.

This status light is attached to mission critical equipment in a human-less
factory. It is imperative that when the system is in a faulted state that
the status is set to allow persons watching from above to send out a
service technician before the fault causes a loss of product or equipment.

These are the specifications for the software:

• SRS #1 - The software shall display a red light if at least one system failure
has been detected.

• SRS #2 - The software shall display a yellow light if there are no system
failures and at least one system warning has been detected.

• SRS #3 - The software shall display a green light if there are no system
failures and no system warnings detected.

• SRS #25 - The software shall detect all system failures as per appendix B
within 2 seconds of the onset of the system failure

• SRS #26 - The software shall detect all system warnings as per appendix B
within 2 seconds of the onset of the system warning

Informative – Physically the light tower also has a blue light in addition to
red, yellow, green. The blue light isn’t used for this feature but it used by
other software features. There are 4 total light bulbs.
Functional FMEA – top level color display
Detailed FMEA – all alarms in appendix B
Interface FMEA – interfaces from each device to light tower

Status light failure analysis example

System wide
failure state

Warning state

Operational
state

D
e
v
i
c
e
1

D
e
v
i
c
e
2

D
e
v
i
c
e
3

D
e
v
i
c
e
n

…

3.0 Analyze failure modes

© Softrel, LLC 2020 37

• First identify the severity of all known hazards

Status Light failure analysis example

Severity Events Immediate effect Company effect

Catastrophic There is a system
failure but green light
is on or no light at all

No service person is sent to
equipment to fix system
failure

Loss of product and/or loss of
equipment. Potential loss of
productivity for entire factory.

Critical There is a system
failure but yellow light
is on

A service person is sent to
the equipment but not as
quickly as if the light
displays red

Loss of product for several
minutes.

Critical There is a system
warning but green light
is on or no light at all

A service person is not sent
to the equipment

There will eventually be a
failure that requires immediate
attention

Moderate There is no failure or
warning but red light is
on

A service person is sent to
this equipment when not
needed

Major inconvenience if it
happens at all

Moderate There is a system
warning but red light is
on

A service person is sent to
this equipment sooner than
need be

Major inconvenience if it
happens regularly.

Moderate All of the lights are on,
or more than one light
is on

A service person is sent to
the equipment and doesn’t
know what’s wrong

It can take longer to service.
Major inconvenience if it
happens regularly.

3.0 Analyze failure modes

© Softrel, LLC 2020 38

• Brainstorm what can go wrong with implementation with light example regardless of
whether the specifications are correct

• More than one light is on at a time
• The lights blink
• No light is displayed
• The software displays a red light when no fault has occurred
• The software displays a yellow light when no warning has occurred
• The software displays a green light when there is a warning or failure
• The software displays the wrong light color when there are multiple failures
• The software displays the wrong light color when there are multiple warnings
• The software displays green after one failure is corrected even though there are

multiple failures
• The software displays green after one warning is corrected even though there are

multiple warnings
• The software takes a long time to change the light color when the status changes

• Place the above failure modes and root causes on the SFMEA template as implementation
faults

• Next, let’s analyze the software design specifications for faults in the specifications
themselves

Status light failure analysis example
3.0 Analyze failure modes

© Softrel, LLC 2020 39

• This is a stateful system, hence we know that faulty state management is
relevant

• Brainstorm all of the ways that this system can be problematic with regards to
sequences and statement management.

• Since this is a state-ful system draw a state transition table or state diagram
(see next slide)

• What’s not in the design specifications?
• Refer to the below list of possible root causes
• Add any additional root causes that you identify in brainstorming

Status light failure analysis example

Failure mode Generic root cause
Faulty
sequences

Required operations are specified in the wrong order
Required state transitions are incorrect or missing
Specification implies a dead state
Specification implies an orphan state
Prohibited transitions aren’t explicitly specified

3.0 Analyze failure modes

© Softrel, LLC 2020 40

• This is the required system state diagram for the status light

Status light failure analysis example
3.0 Analyze failure modes

Initializing Operational Maintenance

Shut downPower
applied

Initialization
success

Operator Command
or faulted state detected

Fault
addressed Operator

command

Many of the faults are related to
jammed or misaligned material.
A common maintenance action is to
unjam the material. This can be done
without rebooting the equipment.
Other maintenance actions may
require a reboot of hardware. If the
reboot time exceeds 15 minutes that
will affect the factory production.

Red
light on

Yellow
light on

Green
light on

All faults
Addressed but
at least one
warning

All faults
addressed
and no
warnings

At least one
system fault

At least on
system
warning

All warnings
addressed

© Softrel, LLC 2020 41

• The state diagram on the previous page is the required state for the status light

• The written specifications are converted to a state diagram and shown on bottom right
• The specifications specify how the lights are set, but don’t explicitly cover what

happens when the warning or failure is resolved
• Since software engineers are obligated to trace their code directly to a written

specification, it can’t be assumed that their code will clear the lights when the warning
or failures are cleared.

• Notice that there is a timing requirement for the setting of lights when an error is
detected but not for the resetting of the lights once error is cleared.

• This is an example of when a picture is most efficient for finding gaps in specifications

Status light failure analysis example
3.0 Analyze failure modes

Red
light on

Yellow
light on

Green
light on

All faults
Addressed but
at least one
warning

At least on
system
warning

All warnings
addressed

Red
light on

Yellow
light on

Green
light on

At least one
system
warning
detected

At least one
system fault At least one

system fault
detected

This is what’s specifiedThis is what’s required

© Softrel, LLC 2020 42

• Brainstorm this generic template against the illustration
• Identify specific root causes for the status light

Status light failure analysis example

Failure mode Generic root cause Specific root causes

Faulty
sequences/
state
transition

Required operations are
specified in the wrong
order

Doesn’t appear to be relevant from state
diagram

Required state transitions
are incorrect or missing

The state transition from yellow to green
is missing.
The specifications don’t state what lights
are displayed – if any – when in the
initializing mode

Specification implies a
dead state

Once the red light is on, it’s always on
until reboot of software

Orphan state See below

Prohibited transition isn’t
explicitly specified.

In this case the blue light is required to be
an “orphan”. A transition for the blue light
isn’t prohibited.

3.0 Analyze failure modes

© Softrel, LLC 2020 43
Status light failure analysis example

Failure mode and root cause Section

N
o.

So
ft

w
ar

e
ite

m
 u

nd
er

co

ns
id

er
at

io
n Design requirement

(Requirement ID Tag)
Related Design
requirement
(Requirement ID Tag)

Software item
functionality

Fa
ilu

re
 m

od
e

G
en

er
ic

 R
oo

t
Ca

us
e

Potential root cause

1

St
at

us
 li

gh
t t

ow
er

SRS 1 - The software
shall display a red
light if at least one
system failure has
been detected.

SRS 25 The software
shall detect all system
failures as per appendix
B within 2 seconds of
the onset of the system
failure

The red light
is on when
the system
is in a failed
state

Fa
ul

ty
 S

eq
ue

nc
es

/S
ta

te
 T

ra
ns

iti
on

s

Sp
ec

ifi
ca

tio
ns

im

pl
y

a
de

ad

st
at

e

Dead state when
transitioning from red to
yellow- (there are no
specifications for
transitioning from failed
state to warning state)

2 SRS 2 - The software
shall display a
yellow light if there
are no system
failures and at least
one system warning
has been detected.

SRS 26 The software
shall detect all system
warnings as per
appendix B within 2
seconds of the onset of
the system warning

The yellow
light is on
when the
system is in
a degraded
state M

is
si

ng
 s

ta
te

tr

an
si

tio
n

No transition from yellow
to green- (there are no
specifications for
transitioning from
warning state to
operational state)

3 SRS 1 -The software
shall display a red
light if at least one
system failure has
been detected.

SRS 25 The software
shall detect all system
failures as per appendix
B within 2 seconds of
the onset of the system
failure

The red light
is on when
the system
is in a failed
state

Sp
ec

ifi
ca

tio
ns

im

pl
y

a
de

ad
 s

ta
te Dead state when

transitioning from red to
green- (there are no
specifications for
transitioning from failed
state to clear state)

3.0 Analyze failure modes

© Softrel, LLC 2020 44
Status light example

Failure mode and root cause Section
No.

So
ft

w
ar

e
un

de
r

co
ns

id
er

at
io

n Design requirement
(Requirement ID
Tag)

Related Design
requirement
(Requirement ID Tag)

Software item
functionality

Fa
ilu

re
 m

od
e

G
en

er
ic

 R
oo

t
Ca

us
e

Potential root
cause

4 Status
light
tower

#1The software shall
display a red light if at
least one system
failure has been
detected. #2The
software shall display
a yellow light if there
are no system failures
and at least one
system warning has
been detected. #3 -
The software shall
display a green light if
there are no system
failures and no system
warnings detected.

SRS_25 The software
shall detect all system
failures as per appendix
B within 2 seconds of
the onset of the system
failure. SRS_26 The
software shall detect all
system warnings as per
appendix B within 2
seconds of the onset of
the system warning.
SRS_25 The software
shall detect all system
failures as per appendix
B within 2 seconds of
the onset of the system
failure

The red light is
on when the
system is in a
failed state. The
yellow light is
on when the
system is in a
degraded state
The red light is
on when the
system is in a
failed state

Fa
ul

ty
 S

eq
ue

nc
es

/S
ta

te
 T

ra
ns

iti
on

s

Pr
oh

ib
ite

d
 tr

an
si

tio
ns

 a
re

n’
t

sp
ec

ifi
ed

There is no
specification to
explicitly
prohibit
changing the
blue light.

5

Re
qu

ire
d

st
at

e
tr

an
si

tio
ns

 a
re

in

co
rr

ec
t o

r m
is

si
ng There is no

specification
for what light,
if any, is on
when
initializing at
startup

3.0 Analyze failure modes

© Softrel, LLC 2020

Prepare Software FMEA
Define scope Tailor the SFMEA

Generate CILMitigate
Analyze failure modes and root

causes

Identify
resources

Identify
equivalent

failure
modes

Identify
consequences

Identify local/
subsystem/

system
failure effects

Identify
severity

and likelihood

Identify
corrective

actions
Identify

preventive
measures

Identify
compensating

provisions

Analyze applicable
failure modes

Identify root causes(s)
for each failure mode

Generate a
Critical

Items List
(CIL)

Identify
boundary

Set
ground

rules

Select
View

points

Identify
what can
go wrong

Gather
artifacts

Define
likelihood

and
severity

Select
template

and
tools

Revise RPN

Identify
riskiest

functions

For each
use case, use case steps,

SW specifications, interfaces,
detailed design, user manuals,

Installation scripts …
(as applicable based

on selected view point)

© Softrel, LLC 2020 464.0 Analyze consequences
Fa

ilu
re

 M
od

e
N

o.

So
ft

w
ar

e
Ite

m
 U

nd
er

 C
on

si
de

ra
tio

n

So
ft

w
ar

e
Ite

m
 F

un
ct

io
na

lit
y

D
es

ig
n

Re
qu

ire
m

en
t (

Re
qu

ire
m

en
t I

D
 ta

g)

Po
te

nt
ia

l F
ai

lu
re

 M
od

e

Po
te

nt
ia

l R
oo

t C
au

se

Po
te

nt
ia

l E
ff

ec
t(

s)
 o

f F
ai

lu
re

Ef
fe

ct
 L

ev
el

 (E
)

D
et

ec
tio

n
M

et
ho

d(
s)

O
cc

ur
re

nc
e

Le
ve

l o
f F

ai
lu

re
 M

od
e

(O
)

D
et

ec
tio

n
Le

ve
l o

f F
ai

lu
re

 M
od

e
(D

)

Ri
sk

 P
rio

rit
y

N
um

be
r (

RP
N

)

So
ft

w
ar

e
CT

Q
 (D

es
ig

n
D

et
ai

ls
)

CT
Q

 R
at

io
na

le

Re
co

m
m

en
de

d
A

ct
io

n(
s)

Re
sp

on
si

bl
e

In
di

vi
du

al
(s

) /
 F

un
ct

io
n(

s)

Ta
rg

et
 C

om
pl

et
io

n
D

at
e

A
ct

io
n(

s)
 T

ak
en

Re
si

du
al

 E
ff

ec
t L

ev
el

 (E
)

Re
si

du
al

 O
cc

ur
re

nc
e

Le
ve

l (
O

)

Re
si

du
al

 D
et

ec
tio

n
Le

ve
l (

D
)

Re
si

du
al

 R
is

k
Pr

io
rit

y
N

um
be

r (
RP

N
)

Sy
st

em
 H

az
ar

d
ID

(s
)

© Softrel, LLC 2020 474.0 Analyze consequences

Severity Events Immediate effect Company effect
Catastrophic There is a system failure

but green light is on or no
light at all

No service person is sent to
equipment to fix system
failure

Loss of product and/or loss of
equipment. Potential loss of
productivity for entire factory.

Critical There is a system failure
but yellow light is on

A service person is sent to the
equipment but not as quickly
as if the light displays red

Loss of product for several
minutes.

Critical There is a system
warning but green light is
on or no light at all

A service person is not sent to
the equipment

There will eventually be a failure
that requires immediate
attention

Major There is no failure or
warning but red light is
on

A service person is sent to this
equipment immediately when
not needed

Major inconvenience if it happens
at all

Minor There is no system
warning but yellow light
is on

A service person is sent to this
equipment when not needed

Major inconvenience if it happens
regularly.

Minor There is a system
warning but red light is
on

A service person is sent to this
equipment sooner than need
be

Major inconvenience if it happens
regularly.

Minor All of the lights are on, or
more than one light is on

A service person is sent to the
equipment and doesn’t know
what’s wrong

It can take longer to service.
Major inconvenience if it happens
regularly.

© Softrel, LLC 2020 48
Status light failure analysis example

No. Design requirement
(Requirement ID
tag)

Potential root cause Potential
effects of
failure

Potential effects
of failure

Effect
level (E)

1 The software shall
display a red light if at
least one system
failure has been
detected.

Dead state when
transitioning from red to
yellow- (there are no
specifications for
transitioning from failed
state to warning state)

There is no
failure or
warning but red
light is on

A service person
is sent
immediately to
this equipment
when not needed

Major

2 The software shall
display a yellow light
if there are no system
failures and at least
one system warning
has been detected.

No transition from
yellow to green- (there
are no specifications for
transitioning from
warning state to
operational state)

There is no
system warning
but yellow light
is on

A service person
is sent to this
equipment when
not needed

Minor

3 The software shall
display a red light if at
least one system
failure has been
detected.

Dead state when
transitioning from red to
green- (there are no
specifications for
transitioning from failed
state to clear state)

There is no
failure or
warning but red
light is on

A service person
is sent
immediately to
this equipment
when not needed

Major

4.0 Analyze consequences

© Softrel, LLC 2020 49
Status light example

No. Design requirement
(Requirement ID tag)

Potential root
cause

Potential effects
of failure

Potential effects
of failure

Effect
level (E)

4 The software shall
display a red light if at
least one system failure
has been detected.
The software shall
display a yellow light if
there are no system
failures and at least one
system warning has been
detected.
The software shall
display a red light if at
least one system failure
has been detected.

There is no
specification to
explicitly
prohibit
changing the
blue light.

Blue light is changed
when it shouldn’t be

Process status isn’t
known to factory.
Potential for mis-
processing.

Critical

5 There is no
specification for
what color, if
any, is displayed
at the initial
state.

If the equipment is
in failed stated,
factory can’t see the
status at all on
startup

Delay in sending
service person to
equipment

Critical

4.0 Analyze consequences

These two hazards weren’t covered in the original FDSC.
• If the blue light isn’t correct it will effect whether the factory knows the state of the

material being processed by the equipment. There could be an undetected
misprocess as worst case.

• If there is no light when equipment starts up and there will be a delay in sending
service person to equipment. That could lead to a backup in the factory.

© Softrel, LLC 2020 50

• Likelihood is assessed AFTER severity is assessed to ensure that
catastrophic failure modes aren’t prematurely pruned from the
analysis

• Likelihood is a function of four things
• Existence likelihood – likelihood that the root cause exists in

the software
• Manifestation likelihood - How likely are the conditions that

cause the root cause to manifest into a failure
• Whether or not the failure mode/root cause is controlled
• How detectable the root cause is during the development

process
• Final likelihood for risk matrix =

Existence Likelihood * Manifestation likelihood * Control
• Detectability will be assessed separately on the risk matrix

4.0 Analyze consequences

© Softrel, LLC 2020 51

1. First, determine if it’s known for sure that the failure mode/root
cause does in fact exist in the specifications or code.

2. If it the specification or code is itself deficient then likelihood of
existence is set to “high”

3. Otherwise, the below table is used to assess likelihood of
existence

Likelihood
of existence

Affected software
design

Past history Domain expertise

High
Very complex or
problematic

Has happened in every past
system or is known to be
present.

No experience with
this feature or product

Moderate Average complexity
Has happened at least once
in the past

Some experience with
this feature or product

Low
Very simple, not
problematic

Hasn’t happened in the past
and there’s no reason to
believe it will happen on this
system.

Significant experience
with this feature or
product

4.0 Analyze consequences

© Softrel, LLC 2020 52

1. Firstly, determine if the failure mode/root cause is contingent upon another
failure – say a failure in the hardware. If the particular root cause will only
manifest itself when there is another failure then it’s likelihood can be no worse
than the likelihood of the related failure.

2. Secondly, determine if the failure mode/root cause could effect multiple
installed sites. If the root cause affects a feature used by most customers then
it’s frequency in operation is greater than a root cause in a feature not
frequently used.

The manifestation likelihood is set to no worse than the likelihood of the root
cause being related to another failure

Likelihood of
manifestation

Related to other failure Install base

High Not related to any other failure Could effect many installed sites, users

Moderate
Will happen if there is one HW
failure

Could effect multiple installed sites, users

Low
Will happen with multiple HW
failures

Could effect a few installed sites, users

4.0 Analyze consequences

© Softrel, LLC 2020 53

• Examples
• BIT/Health monitoring software that monitors other software
• Interlocks can ensure that if the software provides conflicting

commands that the safest command is always executed.

• Review each row in the SFMEA, if there are any known
controls for this failure mode and root cause, identify
them.

4.0 Analyze consequences

Controls

High Multiple controls for the root cause

Moderate One control

Low No controls

© Softrel, LLC 2020 54

The detectability of the failure mode/root cause depends on the operating
conditions required for it to be manifested. If the root cause is visible with
any operating condition then it’s almost certain to be detected in testing. If
the root cause is visible under an operating condition that cannot be
reproduced in a test environment then it’s detectability is improbable.

Likelihood Detection level
5-IMPROBABLE The failure mode can’t be reproduced in a development or

test environment.
4-LOW PROBABILITY The failure mode is visible and detectable only with fault

injection (faulty hardware, unexpected inputs, etc.)
3-MODERATE PROBABILITY The failure mode is visible and detectable with off nominal

testing (pressing cancel buttons, entering invalid data)

2-HIGH PROBABILITY The failure mode is visible and detectable with requirements
based testing

1-ALMOST CERTAIN The failure mode is visible and detectable under any set of
conditions

4.0 Analyze consequences

© Softrel, LLC 2020 55

• Risk Matrices are typically company/project specific
• Here is an example

4.0 Analyze consequences

Likelihood Severity
5 –
Catastrophic

4 – Critical 3 – Major 2 – Minor 1 -
Negligible

5 – Almost
certain

Mitigate Mitigate Mitigate Evaluate Mitigation
not required

4- High Mitigate Mitigate Evaluate Evaluate Mitigation
not required

3 –
Moderate

Mitigate Evaluate Evaluate Mitigation
not required

Mitigation
not required

2 - Low Evaluate Evaluate Mitigation
not required

Mitigation
not required

Mitigation
not required

1 –
Improbable

Mitigation not
required

Mitigation
not
required

Mitigation
not required

Mitigation
not required

Mitigation
not required

© Softrel, LLC 2020 56
Status light failure analysis example

No. Design
requirement
ID Tag

Potential root
cause

Potential
effects of
failure

Effect
level
(E)

Occurrence level of failure mode (O) Detect-
ion level
of
failure
(D)

ControlsExistence
likelihood

Manifestation
likelihood

1 #1The
software
shall display
a red light if
at least one
system
failure has
been
detected.

Dead state
when
transitioning
from red to
green- (there
are no
specifications
for
transitioning
from failed
state to clear
state)

A service
person is
sent
immediately
to this
equipment
when not
needed

3-
Major

5-
None

5- This root
cause is
guaranteed
because
specification
is incorrect

3 - Will
happen
when there
is one HW
failure

5 –
Won’t
be
found
in any
test

4.0 Analyze consequences

• Likelihood is determined by the specific root cause and the control for that root cause – not the effect.
• This specific root cause is guaranteed to effect the design because the specification is insufficient. So the

existence likelihood = 5.
• This root cause is directly related to a hardware failure so the manifestation likelihood is assessed at 3.
• There is no control for the root cause
• The average likelihood = Average(5,5,3) = 4.33
• Since only requirements based testing is planned, and this is a missing specification there is virtually no

chance it will be found during testing so detectability is also assessed at 5. RPN = 3*4*5 = 60.

© Softrel, LLC 2020 57
Status light failure analysis example

No. Design
require-
ment ID
tag

Potential root
cause

Potential
effects of failure

Effect
level (E)

Occurrence level of failure mode (O) Detect-
ion level
of failure
(D)

ControlsExistence
likelihood

Manifestation
likelihood

4 SRS
#1,#2,
#3

There is no
specification
to explicitly
prohibit
changing the
blue light.

Process status
isn’t known to
factory –
Potential for
misprocessing

4-
Critical

5.
None

3- Moderate

3. Average
complexity
3. Similar
problems have
happened at
least once in the
past
3. Average
domain
experience

5- Likely
5. Could
effect many
installed sites
5. Not
related to a
HW failure

5. This
won’t be
detected
in
testing
because
only
require-
ements
are
tested

4.0 Analyze consequences

• The specification doesn’t prohibit the setting of the blue light by the status light feature. So, the question
is whether the code has been designed to prevent this.

• If this code does allow the prohibited transition it won’t be found in testing because of exclusive
requirements based testing.

• In the past, there has been state related problems.
• The software team has average experience with the application.
• This root cause is not related to a hardware failure.
• There is no control for the root cause. However, there are controls that can be mitigated.
• Hence likelihood is = Average(5,3,5) = 4.33 which is rounded down to 4.
• Risk Product Number (RPN) = 4*4*5= 80

© Softrel, LLC 2020

Prepare Software FMEA
Define scope Tailor the SFMEA

Generate CILMitigate
Analyze failure modes and root

causes

Identify
resources

Identify
equivalent

failure
modes

Identify
consequences

Identify local/
subsystem/

system
failure effects

Identify
severity

and likelihood

Identify
corrective

actionsIdentify
controls

Identify
compensating

provisions

Analyze applicable
failure modes

Identify root causes(s)
for each failure mode

Generate a
Critical

Items List
(CIL)

Identify
boundary

Set
ground

rules

Select
View

points

Identify
what can
go wrong

Gather
artifacts

Define
likelihood

and
severity

Select
template

and
tools

Revise RPN

Identify
riskiest

functions

For each
use case, use case steps,

SW specifications, interfaces,
detailed design, user manuals,

Installation scripts …
(as applicable based

on selected view point)

© Softrel, LLC 2020 59
Fa

ilu
re

 M
od

e
N

o.

So
ft

w
ar

e
Ite

m
 U

nd
er

 C
on

si
de

ra
tio

n

So
ft

w
ar

e
Ite

m
 F

un
ct

io
na

lit
y

D
es

ig
n

Re
qu

ire
m

en
t (

Re
qu

ire
m

en
t I

D
 ta

g)

Po
te

nt
ia

l F
ai

lu
re

 M
od

e

Po
te

nt
ia

l R
oo

t C
au

se

Po
te

nt
ia

l E
ff

ec
t(

s)
 o

f F
ai

lu
re

Ef
fe

ct
 L

ev
el

 (E
)

D
et

ec
tio

n
M

et
ho

d(
s)

O
cc

ur
re

nc
e

Le
ve

l o
f F

ai
lu

re
 M

od
e

(O
)

D
et

ec
tio

n
Le

ve
l o

f F
ai

lu
re

 M
od

e
(D

)

Ri
sk

 P
rio

rit
y

N
um

be
r (

RP
N

)

So
ft

w
ar

e
CT

Q
 (D

es
ig

n
D

et
ai

ls
)

CT
Q

 R
at

io
na

le

Re
co

m
m

en
de

d
A

ct
io

n(
s)

Re
sp

on
si

bl
e

In
di

vi
du

al
(s

) /
 F

un
ct

io
n(

s)

Ta
rg

et
 C

om
pl

et
io

n
D

at
e

A
ct

io
n(

s)
 T

ak
en

Re
si

du
al

 E
ff

ec
t L

ev
el

 (E
)

Re
si

du
al

 O
cc

ur
re

nc
e

Le
ve

l (
O

)

Re
si

du
al

 D
et

ec
tio

n
Le

ve
l (

D
)

Re
si

du
al

 R
is

k
Pr

io
rit

y
N

um
be

r (
RP

N
)

Sy
st

em
 H

az
ar

d
ID

(s
)

5.0 Identify Mitigation

© Softrel, LLC 2020 60

• Corrective action is from the development standpoint
and will depend on type of FMEA being performed

• Functional FMEA -corrective action may include changing the
specifications

• Interface and detailed FMEAs -corrective action may include
changing the design, code to correct the failure mode

• Process FMEA -corrective action may be the execution of a
particular practice or avoidance of a particular obstacle

• Examples of corrective actions that don’t apply to
software

• Replacing the software unit with an identical failed unit
• Operator repair of the software unit on site

5.0 Identify Mitigation

© Softrel, LLC 2020 61

•Adjust the RPN based on the assumption that
the corrective action is employed

•Don’t override the original RPN assessment
•Likelihood will change if the problem is

eliminated
•Severity will change only if the problem is

downgraded
•Detectability will change if the failure mode is

reviewed in design, code or fault injection test
procedures are developed.

5.0 Identify Mitigation

© Softrel, LLC 2020 62
Status light failure analysis example

No. Potential
root cause

Potential
effects of
failure

Effect
level

Detect-
ion
level

Occur-
rence
level

RPN Recommended Action(s) Residual
RPN

4 There is no
specification
to explicitly
prohibit
changing the
blue light.

Process
status isn’t
known to
factory –
Potential
for mis-
processing

4.
Critical

5.
Won’t
be
found
in any
test

4.
Likely
to
highly
likely

4*
5*
4=
90

Add a specification
statement prohibited any
changes of blue light by
light status code. Review
code to ensure that status
light never changes the
blue light display.
Monitor during endurance
tests to ensure the blue
light is never changed by
the status light code –
only the code that is
allowed to change the
blue light

RPN =4=
4*1*1
since root
cause is
mitigated
and the
code
review is
in place to
detect it

5.0 Identify Mitigation

The corrective action is to add a specification for the prohibited state transition,
review the code to ensure there isn’t a transition for the blue light in the status code
(only the feature that is supposed to change the blue light). Prohibited transitions are
difficult to test so it would need to be monitored over the testing period.
The original RPN was 4*5*4. With the corrective actions, the root cause is mitigated
so the likelihood = 1 and detectability = 1. The adjusted RPN is then 4*1*1=4.

© Softrel, LLC 2020

Prepare Software FMEA
Define scope Tailor the SFMEA

Generate CILMitigate
Analyze failure modes and root

causes

Identify
resources

Identify
equivalent

failure
modes

Identify
consequences

Identify local/
subsystem/

system
failure effects

Identify
severity

and likelihood

Identify
corrective

actions
Identify

preventive
measures

Identify
compensating

provisions

Analyze applicable
failure modes

Identify root causes(s)
for each failure mode

Generate a
Critical

Items List
(CIL)

Identify
boundary

Set
ground

rules

Select
View

points

Identify
what can
go wrong

Gather
artifacts

Define
likelihood

and
severity

Select
template

and
tools

Revise RPN

Identify
riskiest

functions

For each
use case, use case steps,

SW specifications, interfaces,
detailed design, user manuals,

Installation scripts …
(as applicable based

on selected view point)

© Softrel, LLC 2020 64

• Two failure modes are equivalent if the effect, severity,
likelihood and corrective action are the same

• During this step, identify the failure modes that are
equivalent to each other so as to consolidate the
corrective actions

• Don’t change the worksheet, just do the consolidation
in a separate worksheet

6.0 Generate a Critical Items List (CIL)

© Softrel, LLC 2020 65

1. Add transitions from red to yellow, red to green, yellow to
green to specification and test plan

2. Add prohibited transitions of blue light from status light code
to specifications, code review and test plan.

3. Add specification for what lights should do upon initialization
and test plan.

The corrective actions could all be made at one time without
regard for RPN - or they could be implemented selectively to
address only the most critical RPN root causes.
If the code hasn’t been written yet, it’s often most efficient to
simply fix all defective requirements.
When the code is already written changing the defective
specifications poses a bigger risk from both a schedule and
software standpoint. Hence, the corrective actions are
implemented based on risk.

6.0 Generate a Critical Items List (CIL)
Status light failure analysis example

© Softrel, LLC 2020 66

No
.

Design requirement ID
tag

Potential root
cause

Potential
effects of
failure

Effect
level
(E)

Detect-
ion level
(D)

Occur-
rence
level
(O)

RPN Recommended
Action(s)

Residual
occur-
rence
level (O)

Residual
effect
level (E)

Residual
RPN

1 The software shall display a
red light if at least one
system failure has been
detected. The software shall
display a yellow light if there
are no system failures and at
least one system warning
has been detected. The
software shall display a red
light if at least one system
failure has been detected.

There is no
specification to
explicitly prohibit
changing the blue light.

Process status
isn’t known to
factory.
Potential for
mis-
processing.

4.
Critical

5. Won’t
be found
in any test

4-Likely
to highly
likely

90 Add specification for
prohibited state
transition, review
the code to ensure
there isn't one,
monitor during
testing

1 1 4

2 There is no
specification for what
color, if any, is
displayed at the initial
state.

Delay in
sending
service person
to equipment

4.
Critical

3-Visible
with any
off
nominal
testing

3- Likely 36 Add specification for
what light is on, if
any, during
initialization

1 1 4

3 The software shall display a
red light if at least one
system failure has been
detected.

Dead state when
transitioning from red
to green- (there are no
specifications for
transitioning from
failed state to clear
state)

A service
person is sent
immediately
to this
equipment
when not
needed

3. Major 4 – Visible
only with
fault
injection
testing

3- Likely 36 Change
specifications to add
transition from red
to green, add
transition to test
plan

1 1 3

4 The software shall display a
yellow light if there are no
system failures and at least
one system warning has
been detected.

No transition from
yellow to green- (there
are no specifications for
transitioning from
warning state to
operational state)

A service
person is sent
to this
equipment
when not
needed

2. Minor4 – Visible
only with
fault
injection
testing

3- Likely 24 Change
specifications to add
transition from
yellow to green, add
transition to test
plan

1 1 2

5 The software shall display a
red light if at least one
system failure has been
detected.

Dead state when
transitioning from red
to yellow- (there are no
specifications for
transitioning from
failed state to warning
state)

A service
person is sent
immediately
to this
equipment
when not
needed

3. Major 4 – Visible
only with
fault
injection
testing

3- Likely

3

36 Change
specifications to add
transition from red
to yellow, add
transition to test
plan

1 1 3

6.0 Generate a Critical Items List (CIL)

© Softrel, LLC 2020 67

Severity Likelihood

5 – Very likely 4 – Likely 3 – Moderately
likely

2-Unlikely 1-
Mitigated

5 – Catastrophic

4- Critical #1

3- High #2 #3,#5

2 – Moderate #4

1- Negligible

6.0 Generate a Critical Items List (CIL)

Severity Likelihood

5 – Very likely 4 – Likely 3 – Moderately
likely

2-Unlikely 1-
Mitigated

5 – Catastrophic

4- Critical #1

3- High #3,#5 #2

2 – Moderate #4

1- Negligible

In the below table, the high RPN items are mitigated

© Softrel, LLC 2020 68

What you
learned

• How to prepare for the software FMEA to
minimize cost and maximize effectiveness

• How to get in the right mindset
• How to analyze the failure modes that

apply to the entire software system
• How to analyze the failure modes that

apply to a feature
• How to analyze the failure modes that

apply to a specific software specification
• How to assess the consequences of each

failure mode
• How to assess the mitigations of each

failure mode
• How to track each failure mode to closure

© Softrel, LLC 2020 69

More information

Software failure modes

effects analysis class

Online self guided training

Online instructor led training

On site training

Open session training

http://missionreadysoftware.com/training

Software FMEA toolkit http://missionreadysoftware.com/products

Effective Application of Software
Failure Modes Effects Analysis

https://www.quanterion.com/product/
publications/effective-application-of-
software-failure-modes-effects-
analysis/

http://missionreadysoftware.com/training
http://missionreadysoftware.com/products

© Softrel, LLC 2020 70

References
• [1] Delivering Military Software Affordably, Christian Hagen and Jeff

Sorenson, Defense AT&L, March-April 2012.
• [2] The Cold Hard Truth About Reliable Software, AM Neufelder,

Version 2i, 2019.
• Mil-Std 1629A Procedures for Performing a Failure Mode, Effects

and Criticality Analysis, November 24, 1980.
• MIL-HDBK-338B, Military Handbook: Electronic Reliability Design

Handbook, October 1, 1998.
• Society of Automotive Engineers, “SAE ARP 5580 Recommended

Failure Modes and Effects Analysis (FMEA) Practices for Non-
Automobile Applications”, July, 2001.

• NASA, “NASA-STD 8729.1, Planning, Developing and Managing an
Effective Reliability and Maintainability (R&M) Program.”, 1998.

• NASA, “NASA Guidebook 8719.13B Software Safety”, July, 2004.
• W.E Vesely, F.F. Goldberg, N.H Roberts, D.F. Haasl; “Fault Tree

Handbook NUREG 0492”, US Nuclear Regulatory Commission, 1981

© Softrel, LLC 2020 71
References for famous software related failures from history
• [DART]”4.2 DART Mishap, NASA, Dec. 2006” http://www.nasa.gov/pdf/167813main_RP-06-

119_05-020-E_DART_Report_Final_Dec_27.pdf
• http://www.nasa.gov/mission_pages/dart/main/index.html
• Overview of the DART Mishap Investigation Results For Public Release
• http://www.nasa.gov/pdf/148072main_DART_mishap_overview.pdf

• [DENAIR] Impact of the Delayed Baggage System, US Government Accountability Office, Oct 14,
1994

• http://www.gao.gov/products/RCED-95-35BR

• [DRUM] Dan Stockman, A Single Zero Turns Training to Tragedy-City built software linked to
deadly ’02 Army friendly fire, May 18, 2008

• http://www.journalgazette.net/apps/pbcs.dll/article?AID=/20080518/LOCAL10/805180378

• [GEMINIV] Barton C. Hacker, James M. Grimwood; “On the Shoulders of Titans: A History of
Project Gemini, Chapter 11 – The Covered Wagon, 1977”

• http://www.hq.nasa.gov/office/pao/History/SP-4203/ch11-4.htm

• [INTEL]Associated Press, ”Intel Takes $475 Million Charge To Replace Flawed Pentium; Net
Declines”, Santa Clara, CA. Jan. 17, 1995.

• Intel’s discussion of the Pentium bug can be found here:
http://www.intel.com/support/processors/pentium/sb/CS-013007.htm
• The web site for Dr. Nicely (the person who originally detected the defect):
• http://www.trnicely.net/pentbug/pentbug.html
• http://www.apnewsarchive.com/1995/Intel-Takes-$475-Million-Charge-To-Replace-Flawed-

Pentium-Net-Declines/id-853864f8f1a74457adf39ab272181e08

http://www.nasa.gov/pdf/167813main_RP-06-119_05-020-E_DART_Report_Final_Dec_27.pdf
http://www.nasa.gov/mission_pages/dart/main/index.html
http://www.nasa.gov/pdf/148072main_DART_mishap_overview.pdf
http://www.gao.gov/products/RCED-95-35BR
http://www.journalgazette.net/apps/pbcs.dll/article?AID=/20080518/LOCAL10/805180378
http://www.hq.nasa.gov/office/pao/History/SP-4203/ch11-4.htm
http://www.intel.com/support/processors/pentium/sb/CS-013007.htm
http://www.trnicely.net/pentbug/pentbug.html

© Softrel, LLC 2020 72
References for famous software related failures from history
• [KAL]Flight Into Terrain Korean Air Flight 801, Boeing 747-300, HL7468, Nimitiz Hill,

Guam, August 6, 1997. National Transportation Safety Board Washington, D.C. 20594, Aircraft
Accident Report Controlled

• The NTSB report can be found here: www.airdisaster.com/reports/ntsb/AAR00-01.pdf
• [MARINER]Parker, P. J., “Spacecraft to Mars”, Spaceflight, 12, No. 8, 320-321, Aug. 1970

• http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=MARIN1
• [MARS] Douglass Isbell, Mary Hardin, Joan Underwood, “Mars Climate Orbiter Team Finds Likely

Cause of Loss, Sept. 30, 1999”
• “Mars Climate Orbiter Mishap Investigation Board Phase I Report" (Press release). NASA.

November 10, 1999. Retrieved February 22, 2013.
• http://sunnyday.mit.edu/accidents/MCO_report.pdf
• http://mars.jpl.nasa.gov/msp98/news/mco990930.html

• [NORAD] William Burr, “False Warnings of Soviet Missile Attacks During 1979-1980”, March 1, 2012.
• http://www2.gwu.edu/~nsarchiv/nukevault/ebb371/

• [PANAMA] “Investigation of an Accidental Exposure of Radiotherapy Patients In Panama, Report of
a Team of Experts, 26 May–1 June 2001, International Atomic Energy Agency.”

• http://www-pub.iaea.org/MTCD/publications/PDF/Pub1114_scr.pdf
• http://www.fda.gov/Radiation-

EmittingProducts/RadiationSafety/AlertsandNotices/ucm116533.htm
• [PHOBOSI] Anatoly Zak, “Phobos-I Mission”, Jan. 15, 2012

• http://www.russianspaceweb.com/phobos.html
• http://nssdc.gsfc.nasa.gov/planetary/phobos.html

http://www.airdisaster.com/reports/ntsb/AAR00-01.pdf
http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=MARIN1
http://sunnyday.mit.edu/accidents/MCO_report.pdf
http://sunnyday.mit.edu/accidents/MCO_report.pdf
http://mars.jpl.nasa.gov/msp98/news/mco990930.html
http://www2.gwu.edu/%7Ensarchiv/nukevault/ebb371/
http://www-pub.iaea.org/MTCD/publications/PDF/Pub1114_scr.pdf
http://www.fda.gov/Radiation-EmittingProducts/RadiationSafety/AlertsandNotices/ucm116533.htm
http://www.russianspaceweb.com/phobos.html
http://nssdc.gsfc.nasa.gov/planetary/phobos.html

© Softrel, LLC 2020 73
References for famous software related failures from history
• [QANTAS72] Australian Transport Safety Bureau “Qantas Airbus A330 accident Media

Conference”, Oct. 14, 2008.
• https://www.atsb.gov.au/newsroom/2008/release/2008_43.aspx

• [RAILCAR] Lena H. Sun, ”Metro replacing software that allowed train fire”,
Washington Post, April 13, 2007.

• http://www.washingtonpost.com/wp-
dyn/content/article/2007/04/12/AR2007041202061.html

• [SCUD] R.W. Apple Jr., “WAR IN THE GULF: Scud Attack; Scud Missile Hits a U.S.
Barracks”, Feb. 26, 1991.

• http://www.nytimes.com/1991/02/26/world/war-in-the-gulf-scud-attack-scud-
missile-hits-a-us-barracks-killing-27.html

• David Evans, “Software Blamed For Patriot Error, Army Says Scud Attacking
Barracks Couldn`t Be Tracked”, June 06, 1991, Chicago Tribune.

• http://articles.chicagotribune.com/1991-06-06/news/9102200435_1_iraqi-scud-
missile-defective-software-tracking

• [SDIO] “The development of software for ballistic-missile defense, H. Lin, Scientific
American”, vol. 253, no. 6 (Dec. 1985), p. 51.

• [SF911] Phillip Matier & Andrew Ross, ”San Francisco 911 System Woes”, San
Francisco Chronicle, October 18, 1995, pgA1.

• http://www.sfgate.com/news/article/PAGE-ONE-S-F-Stalls-Shake-up-Of-911-
System-3022282.php

https://www.atsb.gov.au/newsroom/2008/release/2008_43.aspx
http://www.washingtonpost.com/wp-dyn/content/article/2007/04/12/AR2007041202061.html
http://articles.chicagotribune.com/1991-06-06/news/9102200435_1_iraqi-scud-missile-defective-software-tracking
http://www.sfgate.com/news/article/PAGE-ONE-S-F-Stalls-Shake-up-Of-911-System-3022282.php

© Softrel, LLC 2020 74References for famous software related failures from history
• [SOHO] “SOHO Mission Interruption Joint NASA/ESA”, Investigation Board, Final

Report, August 31, 1998.
• http://umbra.nascom.nasa.gov/sohOSOHO_final_report.html

• [SPIRIT] Ron Wilson, “The trouble with Rover is revealed”, EE Times, 2/20/2004.
• http://www.eetimes.com/document.asp?doc_id=1148448.

• [STS-126] NASA, “Shuttle System Failure Case Studies: STS-126, NASA Safety Center
Special Study, NASA, April 2009.

• [SURVEYOR]NASA, Mars Global Surveyor (MGS) Spacecraft Loss of Contact, NASA,
April 13, 2007.

• http://www.nasa.gov/mission_pages/mgs/mgs-20070413.html
• [TITANIV] J.Gregory Pavlovish, Colonel, USAF, Accident Investigation Board

President. “Titan IV B-32/Centaur/Milstar Report”.
• http://webcache.googleusercontent.com/search?q=cache:b7DaYU3zSOgJ:sunnyday.mit.edu

/accidents/titan_1999_rpt.doc+&cd=12&hl=en&ct=clnk&gl=us
• [THERAC] Angela Griffith, “Therac-25 Radiation Overdoses”, August 8, 2010.

• http://root-cause-analysis.info/2010/08/08/therac-25-radiation-overdoses/
• [USSR] David Hoffman, “I Had a Funny Feeling”, Feb. 10, 1999.

• http://www.washingtonpost.com/wp-srv/inatl/longterm/coldwar/shatter021099b.htm
• [WWMCCS] Richard W. Gutmann, ”Problems Associated with the world wide military

command and control system” pp. 17, April 23, 1979.
• http://archive.gao.gov/f0302/109172.pdf

http://umbra.nascom.nasa.gov/soho/SOHO_final_report.html
http://www.eetimes.com/document.asp?doc_id=1148448&
http://www.eetimes.com/document.asp?doc_id=1148448
http://www.nasa.gov/mission_pages/mgs/mgs-20070413.html
http://webcache.googleusercontent.com/search?q=cache:b7DaYU3zSOgJ:sunnyday.mit.edu/accidents/titan_1999_rpt.doc+&cd=12&hl=en&ct=clnk&gl=us
http://root-cause-analysis.info/2010/08/08/therac-25-radiation-overdoses/
http://www.washingtonpost.com/wp-srv/inatl/longterm/coldwar/shatter021099b.htm
http://archive.gao.gov/f0302/109172.pdf

© Softrel, LLC 2020 75

Guidance Comments

Mil-Std 1629A Procedures for Performing
a Failure Mode, Effects and Criticality
Analysis, November 24, 1980. Cancelled
on 8/1998.

Defines how FMEAs are performed
but it doesn’t discuss software
components

MIL-HDBK-338B, Military Handbook:
Electronic Reliability Design Handbook,
October 1, 1998.

Adapted in 1988 to apply to software.
However, the guidance provides only
a few failure modes and a limited
example. There is no discussion of
the software related viewpoints.

“SAE ARP 5580 Recommended Failure
Modes and Effects Analysis (FMEA)
Practices for Non-Automobile
Applications”, July, 2001, Society of
Automotive Engineers.

Introduced the concepts of the
various software viewpoints.
Introduced a few failure modes but
examples and guidance is limited.

“Effective Application of Software Failure
Modes Effects Analysis”, November,
2014, AM Neufelder, produced for
Quanterion, Inc.

Identifies hundreds of software
specific failure modes and root
causes, 8 possible viewpoints and
dozens of real world examples.

© Softrel, LLC 2020

HTTP://WWW.MISSIONREADYSOFTWARE.COM
SALES@SOFTREL.COM

321-514-4659

http://www.missionreadysoftware.com/
mailto:sales@softrel.com

	 �
	Copyright	
	Additional information
	About Ann Marie Neufelder
	Introduction
	Software is increasing in size
	Key benefits of Software FMEAs
	How to NOT conduct a software FMEA
	At highest level - three things that can and will go wrong with software
	Common software root causes summarized
	FAQ– Which of these failure modes is most common? Most severe effect?
	A few real world failure events due to these root causes
	Real example of faulty data and faulty error handling
	How the SFMEA fits into the system life cycle
	Prepare the Software FMEA
	To perform an effective SFMEA -first understand what can and usually does go wrong
	Example of common power checking fault
	Example of common data logging fault
	Example
	Example of how specification can be incorrectly coded
	Identify most relevant viewpoint for a particular software version
	Do not analyze what the software is – analyze what the software does
	Total failures rarely result from total failure of software to execute
	Focusing at too high or too low level a level of abstraction
	Don’t mix functional and process root causes
	Pick your battles
	Resources Required
	Analyze software failure modes and root causes
	Template
	Summary of views, sub-views and failure modes/root causes
	Efficiency is key
	A very common specification fault
	Example of dead-end error handling
	Example of order dependence in fault handling
	Example of no designed safe states, no safe state return
	Example specifications
	Define Failure Definition Scoring Criteria (FDSC)
	Identify potential faults caused by implementation
	Analyze the specifications for most relevant software failure mode
	Visualize the specifications for greater efficiency
	Visualize the specifications for greater efficiency
	Brainstorm specific root cause for faulty sequences/state transitions
	Place brainstormed root causes on SFMEA template
	Brainstorm faulty sequences/state transitions
	Identify Consequences
	Template
	Analyze each row of the SFMEA for effects using the defined FDSC
	Map the software root causes to the known hazards
	Identify severity for those that don’t map to initial hazards list
	Assess Likelihood
	Assess likelihood that root cause exists in the software
	Assess likelihood that the failure mode will manifest itself in operation
	Identify controls
	Analyze Detectability for Each SFMEA Row
	Apply the Risk Matrix
	Map the software root causes to the known hazards
	Map the software root causes to the known hazards
	Identify Mitigation
	Template
	Identify Corrective Actions
	Revise Risk Product Number (RPN)
	Identify the corrective actions and revise the RPN
	Generate a Critical Items List (CIL)
	Identify Equivalent Failure Modes
	These are the corrective actions to resolve every identified failure root cause of the status light
	The SFMEA is sorted by RPN – most critical at top
	The before and after risk matrix is presented to management
	What you learned
	More information
	References
	References for famous software related failures from history
	References for famous software related failures from history
	References for famous software related failures from history
	References for famous software related failures from history
	SFMEA guidance
	Slide Number 76

