
FOUR THINGS THAT ARE ALMOST
GUARANTEED TO REDUCE

THE RELIABILITY OF A SOFTWARE
INTENSIVE SYSTEM

Ann Marie Neufelder, Softrel, LLC

amneufelder@softrel.com

1

© Softrel, LLC 2020 This presentation may not be copied in part or in whole without written permission from AM Neufelder.

Background

Since 1987, these factors have been quantitatively associated with more reliable
software
“Software Reliability, Measurement, and Testing Software Reliability and Test Integration” RL-TR-92-

52, Rome Laboratory, Rome, NY, 1992

“The Cold Hard Truth About Reliable Software, Edition 6i”, AM Neufelder, 2019.

© Softrel, LLC 2020This presentation may not be copied in part or in whole without written
permission from AM Neufelder.

2

Factor associated
with more reliable
software

Examples

People Domain experience, Team sizes and organization, geographical location,
contract help versus employees, etc.

Processes Degree to which software activities are defined and repeated

Techniques Degree to which software engineers can develop software requirements,
design, code, test plans that are most likely to meet requirements with fewest
defects

Tools Degree to which software organization can avoid tedious and repetitive tasks

Background

Actual data from 140+ projects also shows that these factors are associated with
less reliable software[1]

© Softrel, LLC 2020This presentation may not be copied in part or in whole without written permission from AM Neufelder.
3

Factor associated with less
reliable software

Description

Size is grossly underestimated Software size determines the schedule and the reliability prediction

Reliability growth is grossly
overestimated

Reliability growth is how long the software version is tested in a real
environment without added any new features

Defect Pileup What happens when software releases are spaced too close together

Too many risky things
happening in one software
release

Risky things: New target hardware, version 1 software, brand new
software staff, brand new software technology, brand new software
processes or environments

Size is grossly underestimated
Theoretically software size has linear relationship to reliability
Nearly all software reliability prediction models employ the below

exponential formula to predict software failure rate [2]

Double the size -> Double the software faults -> Double the failure rate

© Softrel, LLC 2020This presentation may not be copied in part or in whole without written
permission from AM Neufelder. 4

EKSLOC Effective size of software in 1000 source lines of code
DD Defect density – normalized operational defects per 1000 EKSLOC

F0 = EKSLOC * DD Initial number of faults/defects in the code at delivery
K Reliability growth constant related to number of deployed systems.

N0
e-kti

Number of faults/defects remaining in the code in the selected time
period ti

N0
e-kti-1 Number of faults/defects remaining in the previous time period

(Nti- Nti-1) Predicted software faults in between time i and i-1
(Nti- Nti-1)/ ti Predicted software failure rate at month ti

Size is grossly underestimated
• However, when size is grossly underestimated, effect on projected defects is non-

linearly underestimated
• Gross underestimates of size almost always result in serious schedule delay because there is more

product to test and more defects to be found than originally planned for

• Serious unexpected schedule delays usually mean less time for software reliability growth

© Softrel, LLC 2020This presentation may not be copied in part or in whole without written
permission from AM Neufelder. 5

Software size can be easily overestimated
when…

•Estimates of reuse are optimistic
• If any of these things is true, the reused code estimate is probably optimistic

• Reused code written in different language or development environment or Operating
System

• Reused code written for different target hardware
• Reused code is more than a decade old

•Size estimates usually fail to consider that software has been growing
in size at about 12% a year[2]
• This is because software is replacing hardware functionality
• Compare your kitchen appliances manufactured in 2014 to those from ten years

ago!

© Softrel, LLC 2020This presentation may not be copied in part or in whole without written permission from AM Neufelder.
6

Reliability growth is grossly overestimated

© Softrel, LLC 2020This presentation may not be copied in part or in whole without written permission from AM Neufelder.
7

It can be grossly overestimated when…

Size is grossly
underestimated as shown

previously

Unlimited reliability growth
is assumed

Unless the software is at the end of
its useful life it is virtually

guaranteed that reliability growth is
limited

If the overall schedule slips
for software but not

hardware, software will
probably experience less

reliability growth

Reliability growth has been shown to have non-linear relationship to software
reliability[3]

How reliability growth has non-linear effect on failure
rate

• Using industry accepted
model shown previously…

• If software schedule slips
such that ¼ of scheduled
reliability growth can be
experienced…

• The software failure rate
can be about 90 times
higher.

© Softrel, LLC 2020This presentation may not be copied in part or in whole without written
permission from AM Neufelder. 8

18281

204

0.000

10000.000

20000.000

30000.000

40000.000

50000.000

60000.000

70000.000

80000.000

0 10 20 30 40 50 60F
a

ilu
re

 r
a

te
 p

e
r

m
ill

io
n

 h
o

u
rs

Months of reliability growth

λsw in failures per million hours

Reliability growth for
software is bounded

Common belief that software
reliability grows indefinitely if
software is used and defects are
removed when discovered

This is only feasible if the software is
at the end of it’s useful life

Otherwise, it’s almost certain to have
future feature drops well before the
failure rate bottoms out

© Softrel, LLC 2020This presentation may not be copied in part or in whole without written
permission from AM Neufelder. 9

0

20

40

60

80

100

120

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

F
a

il
u

re
 r

a
te

Months of customer usage

Expected versus actual growth

Expected growth

Growth when there

are feature drops

Defects Can Pile Up

• Defect pileup happens when new feature releases are too close together

• Defect pileup is an extreme case of defect backlog – the backlog is increasing over time

• This can easily happen if software defects are tracked or predicted in a vacuum or if they aren’t predicted or
tracked at all

• Superimposing the cumulative predicted or actual defects as shown below is a simple but effective means to
detect and avoid defect pileup

© Softrel, LLC 2020This presentation may not be copied in part or in whole without written
permission from AM Neufelder.

10

0

100

200

300

400

500

600

700

800

900

Total defects predicted (nominal case) from releases 1 to 5 predicted for each month

Pileup

Too many risky
things in one release

These are serious risks that can impact the
reliability of a software release
Substantially new target/system hardware

The software release is the very first version

The product or system is brand new

The software staff are new to the
organization or industry

The software will employ a brand-new
software technology

The organization will employ brand new or
substantially modified software processes

© Softrel, LLC 2020This presentation may not be copied in part or in whole without written permission from AM Neufelder.
11

Too many risky things in
one software release

• Data from 140+ projects indicates
that
• Successful projects never had more than

2 of these risks

• Distressed projects always had at least 1
risk

© Softrel, LLC 2020This presentation may not be copied in part or in whole without written
permission from AM Neufelder. 12

The outcome of each project in the database was known to be either 1) successful 2) distressed or 3) neither. The third category is referred

to as “mediocre”.

• A successful project is defined as having a Defect Removal Efficiency (DRE) of at least 75% at deployment. None of these projects were

recalled or cancelled.

• A distressed project is defined as having <= 40% defect removal at deployment. These projects were almost always recalled or

cancelled.

Successful

release

Mediocre

release

Distressed

release
Fielded defect density (defects

per normalized EKSLOC) 0.04 0.31 1.63
None of these risks existed for

this field release 78% 27% 0%
Exactly one of these risks existed

for this field release 11% 64% 50%
Exactly two of these risks existed

for this field release 11% 6% 30%
Exactly three of these risks

existed for this field release 0% 0% 10%
Four or more of these risks

existed for this field release 0% 3% 10%

Conclusions

• With regards to software reliability, most industry
practices and standards focus on the processes,
techniques, organization and tools to achieve
success

• However, not as much is written about how to
avoid a distressed project

• Distressed projects can be avoided if the causes
for distress are spotted early

• Further reading
• To read more about the practices that are related

to successful, mediocre and distressed projects
http://www.softrel.com/truth.htm

• In 2016 a new book will be published with the
entire set of factors that effects software
reliability

• The Software Reliability Toolkit training class and
the Software Reliability toolkit also has the
entire set of factors as well as a model to predict
defects from those factors

© Softrel, LLC 2020This presentation may not be copied in part or in whole without written permission from AM Neufelder.

13

References

[1] A. Neufelder, “The Cold Hard Truth About Reliable Software,
Edition 6i”, Published by Softrel, LLC, 2019.
http://www.softrel.com/truth.htm
[2] US General Accounting Office, “GAO report number GAO-10-
706T entitled 'defense acquisitions: observations on weapon
program performance and acquisition reforms' which was released
on may 19, 2010. Http://www.Gao.Gov/products/GAO-10-706T

[3] Some references include
a) J. McCall, W. Randell, J. Dunham, L. Lauterbach, Software
Reliability, Measurement, and Testing Software Reliability and
Test Integration RL-TR-92-52, Rome Laboratory, Rome, NY,
1992

b) "System and Software Reliability Assurance Notebook", P.
Lakey, Boeing Corp., A. Neufelder, produced for Rome
Laboratory, 1997.

c) Keene, Dr. Samuel, Cole, G.F. “Gerry”, “Reliability Growth of
Fielded Software”, Reliability Review, Vol 14, March 1994.

© Softrel, LLC 2020This presentation may not be copied in part or in whole without written permission from AM Neufelder.

14

