
Predict Software Reliability Before the
Code is Written

Ann Marie Neufelder
SoftRel, LLC

ann.neufelder@missionreadysoftware.com
http://www.missionreadysoftware.com

© SoftRel, LLC 2020. This presentation may not be reprinted in whole or part without
written permission from amneufelder@softrel.com

mailto:ann.neufelder@missionreadysoftware.com

Copyright

• This presentation is copy protected and
licensed to one person who has
registered for the class

• You may not
• Use any part of this presentation in a

derivative work including but not
limited to presentations, conferences,
published articles or books, theses, etc.

• Convert this presentation to any other
format other than PDF.

• Violators will be prosecuted to the fullest
extent of the law

Software reliability timeline

© SoftRel, LLC 2020. This presentation may not be reprinted in whole or part without written permission from amneufelder@softrel.com

31960’s 1970’s 1980’s 1990’s

1962 First
recorded
system
failure

Many software reliability estimation models developed.
Main obstacle – can’t be used until late in life cycle.

1968
The term
“software

reliability” is
invented.

First publicly available model
to predict software reliability

early in lifecycle developed
by USAF Rome Air

Development Center with
SAIC and Research Triangle

Park –
Main obstacles – model only
useful for aircraft and model

never updated after 1992.

SoftRel, LLC
develops models

based on RL
model but

usable on all
applications

A few proprietary models
developed

2000’s

IEEE 1633
Rewritten to
be practical

Software reliability modeling
• Software reliability can be predicted before the code is written, estimated during

testing and calculated once the software is fielded

© SoftRel, LLC 2020. This presentation may not be reprinted in whole or part without written permission from amneufelder@softrel.com

4

Prediction/
Assessment

Reliability Growth Models

Used before code is written
•Predictions can be incorporated
into the system RBD
•Supports planning
•Supports sensitivity analysis
•A few models have been
available since 1987

Used during system level testing or operation
•Determines when to stop testing
•Validates prediction
•Less useful than prediction for planning and
avoiding problematic releases
•Many models have been developed since 1970s
such as the Musa Model.
•The exponential model most commonly used.

Section of IEEE 1633 Recommended Practices for
Software Reliability, 2016

5.3 5.4

Limitations of each type of modeling

• All are based on historical actual data

• All generate a prediction by calibrating
current project against historical project(s)

• Accuracy depends on
• How similar historical data is to current project

• Application type
• Product stability (version 1 versus version

50)
• Capabilities of the development team

• How current the historical data is
• How much historical data exists

• All are based on extrapolating an existing
trend into the future

• Accuracy depends on
• Test coverage

• Low test coverage usually results in
optimistic results

• How closely actual trend matches assumed
trend

• i.e. if model assumes a logarithmic
trend is that the actual trend?

• How closely the model assumptions match
actual

• Defect removal
• Defect independence

5

PREDICTION/ASSESSMENT
MODELS

RELIABILITY GROWTH MODELS

© SoftRel, LLC 2020. This presentation may not be reprinted in whole or part without written permission from amneufelder@softrel.com

PREDICTIONS/ASSESSMENTS Overview

Copyright SoftRel, LLC 2020

6

Software reliability assessment
goals and outputs

• Predict any of these reliability related metrics
• Defect density (test and operation)
• Defects (test and operation)
• Mean Time To Failure (MTTF), reliability, availability at any point in testing or

operation
• Reliability ty growth in any of the above metrics over time
• Mean Time To Software Restore (MTSWR)
• Maintenance and testing staffing levels to reach an objective

• Use prediction to
• Analyze sensitivity to make a specific growth in one or more metrics
• Analyze sensitivity between software and hardware
• Benchmark defect density to others in industry
• Identify practices that aren’t effective for reducing defects

© SoftRel, LLC 2020. This presentation may not be reprinted in whole or part without written permission from amneufelder@softrel.com

7

If you can predict this defect profile, you
can predict failure rate
For decades the defect profile has been the basis for nearly

all software reliability models[2]
During development you can predict the entire profile or parts of it
During testing you can extrapolate the remainder of the profile

© SoftRel, LLC 2020. This presentation may not be reprinted in whole or part without written permission from amneufelder@softrel.com

5
0

2

4

6

8

10

12

Defects predicted over life of version

Defects found
before system test

Defects found
during system

testing

Defects found after
testing

Industry framework for early software
reliability predictions

© SoftRel, LLC 2020. This presentation may not be reprinted in whole or part without written permission from amneufelder@softrel.com

9

1. Predict
effective

size

2. Predict
testing or

fielded
defect
density

3. Predict testing
or fielded defects

5. Predict
failure

rate/MTTF
during test

or operation4. Identify defect
profile over time

7. Predict
mission duration

and reliability

6. MTSWR and
availability

Sensitivity
Analysis

This framework has been used for decades. What has changed over the years are
the models for steps 1, 2 and 4. These models evolve because software languages,
development methods and deployment life cycles have evolved.

If everything else is equal, more code
means more defects

• For in house software
• Predict effective size of new, modified and reused code using

best available industry method

• For COTS software (assuming vendor can’t provide effective size
estimates)
• Determine installed application size in KB (only EXEs and DLLs)
• Convert application size to KSLOC using industry conversion
• Assess reuse effectiveness by using default multiplier of 1%

• Accounts for fact that COTS has been fielded to multiple sites

© SoftRel, LLC 2020. This presentation may not be reprinted in whole or part without written permission from amneufelder@softrel.com 7

http://www.leshatton.org/Documents/LOC2005.pdf

2. Available Methods for predicting
defect density
• Ideally defect density prediction model optimizes simplicity, and accuracy and is updated

on a regular basis

© SoftRel, LLC 2020. This presentation may not be reprinted in whole or part without written permission from amneufelder@softrel.com

8

Method Simplicity Last updated
on..

Accuracy

Predict defect density from
historical data

Medium N/A Usually most accurate IF
historical data is simple and
recent

Predict defect density using an
industry lookup chart or from SEI
CMMi lookup chart*

Easy Varies Usually the least accurate.
Most useful for COTS
software.

Predict defect density via
asessments such as Shortcut, Full-
scale, Rome Laboratory,
Neufelder models.

Easy to
Detailed

Softrel models
are updated
every 2 years
Rome Labs model
was last updated
in 1992

If the survey is answered
properly these are usually
most accurate.
RL model is geared only
towards aircraft.

* These models are recommended in the normative section of the IEEE 1633 Recommended Practices for
Software Reliability, 2016.

Assessment Based Defect Density Models

Survey based model Number of
questions

Comments

Shortcut model* 22 •More accurate than lookup charts
•Questions can be answered by almost anyone familiar
with the project

Rome Laboratory** 45-212 •Some questions are outdated

Full-scale model A** 98 •More accurate than the shortcut model
•Questions require input from software leads, software
testing, software designers

Full-scale model B** 200 •More accurate than the Full-scale model A
•Questions require input from software leads, software
testing, software designers

Full-scale model C** 300 •More accurate than the Full-scale model B
•Questions require input from software leads, software
testing, software designers
•100 questions require expert review of development
artifacts

Neufelder model 149 •Based on Process Grade Factors

Copyright SoftRel, LLC 2013 12

* These models are recommended in the normative section of the IEEE 1633 Recommended Practices for Software
Reliability, 2016. ** These models are recommended in Annexes of IEEE 1633 Recommended Practices for Software
Reliability, 2016.

How the Assessment Models Works

© SoftRel, LLC 2020. This presentation may not be reprinted in whole or part without written permission from amneufelder@softrel.com

13

1. Complete
assessment
and
calculate
score

3. When improving to next
group

•Average defect reduction =
55%
•Average probability (late)
reduction = 25%

Predicted
Percentile Group

World class

Distressed

Very good
Good

Average

Fair
Poor

1%

99%

10%
25%
50%

75%
90%

Score

Predicted
Normalized

Fielded
Defect
Density

Predicted
Probability

late
delivery

.011

2.069

.060

.112

.205

.608
1.111

10%

100%

20%
25%
36%
85%

100%

2.Find defect density
and

Probability (late delivery)
from

corresponding row

Seven clusters used to predict defect density and
ultimately software reliability

© SoftRel, LLC 2020. This presentation may not be reprinted in whole or part without written permission from amneufelder@softrel.com

14

•Percentile group predictions…
•Predicted directly from answering a survey and scoring it
•Pertain to a particular product version
•Can only change if or when risks or strengths change
•Some risks/strengths are temporary; others can’t be changed at all
•Can transition in the wrong direction on same product if

•New risks/obstacles added
•Opportunities are abandoned

•World class does not mean defect free. It simply means better than
the defect density ranges in database.

Fewer fielded defects

99%
Distressed

10%
Very
good

75%
Fair

50%
Average

25%
Good

More risks than strengths More strengths than risksStrengths and risks
Offset each other

More fielded defects

90%
Poor

1%
World
Class

3.Predict testing or fielded defects
• Defects can be predicted as follows
Testing defect density * Effective size = Defects predicted to be found

during testing (Entire yellow area)
Fielded defect density * Effective size = Defects predicted to be found in

operation (Entire red area)

© SoftRel, LLC 2020. This presentation may not be reprinted in whole or part without written permission from amneufelder@softrel.com

12

Defects predicted
after system

testing

Defects predicted
during system

testing

0

2

4

6

8

10

12

Defects over life of version

4. Identify shape of defect discovery
profile

© SoftRel, LLC 2020. This presentation may not be reprinted in whole or part without written permission from amneufelder@softrel.com

13

Growth rate (Q)
derived from slope .

Default = 4.5. Ranges
from 3 to 10

Development Test Operation

Defects

Calendar time

This width is growth
period (time until no
more residual defects
occur) =TF = usually

3* average time
between releases.

Default = 48.

An exponential formula is solved
as an array to yield this area

Defects(month i) =

Defects (N)
=area

Typical
start of
systems
Testing

Delivery
milestone

 - N ((-Q*i/TF))/TF)(-Q*(i-)expexp 1

Rate at which defects result in observed
failures (growth rate)

© SoftRel, LLC 2020. This presentation may not be reprinted in whole or part without written permission from amneufelder@softrel.com

14

Faster growth rate and shorter growth period – Example:
Software is shipped to millions of end users at the same time

and each of them uses the software differently.

Slower growth rate and longer growth
period – Example: Software deliveries

are staged such that the possible
inputs/operational profile is constrained

and predictable

By default, the growth rate will be in this
range

5. Use defect discovery profile to predict failure
rate/MTTF

• Dividing defect profile by duty cycle profile yields a prediction of failure rate as
shown next

• Ti= duty cycle for month i - how much the software is operated during some period
of calendar time. Ex:
• If software is operating 24/7 ->duty cycle is 730 hours per month
• If software operates during normal working hours ->duty cycle is 176 hours per month

• MTTF i=

• MTTCF i

• % severe = % of all fielded defects that are predicted to impact availability

© SoftRel, LLC 2020. This presentation may not be reprinted in whole or part without written permission from amneufelder@softrel.com

15

i

i

ileDefectprofsevere
T

*%

i

i

ileDefectprof
T

6. Predict MTSWR (Mean Time To Software Restore)
and Availability
• Needed to predict availability

• For hardware, MTTR is used. For software, MTSWR is used.

• MTSWR =weighted average of time for applicable restore actions by the
expected number of defects that are associated with each restore action

• Availability profile over growth period = Availabilityi=

• In the below example, MTSWR is a weighted average of the two rows

© SoftRel, LLC 2020. This presentation may not be reprinted in whole or part without written permission from amneufelder@softrel.com

16

Operational restore action Average
restore time

Percentage
weight

Correct the software 40 hours .01

Restart or reboot 15 minutes .99

MTSWRMTTCF
MTTCF

i

i

+

7. Predict mission time and reliability

• Reliability profile over growth period =
• Ri= exp(-mission time/ MTTCF

i)

• Mission time = how long the software will take to
perform a specific operation or mission
• Not to be confused with duty cycle or testing time
• Example: A typical dishwasher cycle is 45 minutes. The

software is not executing outside of this time, so
reliability is computed for the 45 minute cycle.

© SoftRel, LLC 2020. This presentation may not be reprinted in whole or part without written permission from amneufelder@softrel.com

20

Confidence Bounds and prediction error

• Software prediction confidence bounds are a function of

© SoftRel, LLC 2020. This presentation may not be reprinted in whole or part without written permission from amneufelder@softrel.com

18

0

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8 10 12 14

M
TT

F

Months after delivery

Nominal MTTF
Lower bound MTTF
Upper bound MTTF

Parameter Contribution to prediction error

Size prediction error due to scope
change

Until code is complete, this will usually have the
largest relative error

Size prediction error due to error in
sizing estimate (scope unchanged)

Minimized with use of tools, historical data

Defect density prediction error Minimized by validating model inputs

Growth rate error Not usually a large source of error

Predictions can be used for scheduling and
maintenance
 Predictions can be used to determine how far apart releases should be to

optimize warranty costs and response time

 This is an example from industry. The defects were predicted to pileup up
after the third release.

© SoftRel, LLC 2020. This presentation may not be reprinted in whole or part without written permission from amneufelder@softrel.com

19

0
100
200
300
400
500
600
700
800
900

Total defects predicted (nominal case) from releases 1 to 5 predicted for each
month

Pileup

Sensitivity analysis and defect reduction

 Assessment models were developed for the purpose of supporting defect
reduction scenario analysis

 Use the models to find the gaps and determine sensitivity of each gap

 Develop strategies for reducing the defects and rework the predictions
based on a few key improvements

© SoftRel, LLC 2020. This presentation may not be reprinted in whole or part without written permission from amneufelder@softrel.com23

To date 600+ characteristics related to the 3 P’s have been
mathematically correlated to software reliability by SoftRel, LLC[1]
Product/industry/application type
People
Practices/process

Of these, 120 are so strongly related that they are used collectively
to predict before the code is even written

[1]See the entire research and complete list of practices at “The Cold Hard
Truth About Reliable Software”, A. Neufelder, SoftRel, LLC, 2019

© SoftRel, LLC 2020. This presentation may not be reprinted in whole or part without written permission from amneufelder@softrel.com
24

Know which software characteristics/practices have
biggest impact on software reliability

Research results
revealed some
surprises
• Some practices, tools,

metrics don’t always result
in better software when…
• Required prerequisites

may not in place
• Required training may

not in place
• Practices, tools or

metrics used incorrectly
• Software group not

mature enough to
implement practice, tool
or metric

• Metric provides results
that aren’t useful

Copyright SoftRel, LLC 2013 25

Practice that’s not
always related to
lower defect
density

Why

Expensive
automated design
and testing tools

Requires training and
maturity

Peer code reviews Agenda is often adhoc
or superficial

Advanced software
life cycle models

Model not executed
properly or it’s not the
right model for this
software product

These are the 10 factors mostly
strongly related to software reliability

1. Software engineers have product/industry domain expertise

2. Do formal white/clear box unit testing

3. Start writing test plans before any code is written

4. Outsource features that aren’t in your organization’s line of business

5. Avoid outsourcing features that are your organization’s line of business

6. Don’t skip requirements, design, unit test or system testing even for small releases

7. Plan ahead – even for small releases. Most projects are late because of unscheduled
defect fixes from the previous release (and didn’t plan on it)

8. Reduce “Big Blobs” - big teams, long milestones - especially when you have a large
project

9. Don’t use automated tools until group has expertise in whatever the tool is automating

10. Define in writing what the software should NOT do

© SoftRel, LLC 2020. This presentation may not be reprinted in whole
or part without written permission from amneufelder@softrel.com 23

RELIABILITY GROWTH
MODELS USED DURING

TESTING
Overview

Copyright SoftRel, LLC 2020 27

Overview

• Reliability growth models have been in use since the 1970s for
software reliability

• Due to exceedingly poor documentation and guidance by
Academic community, there has been unnecessary confusion
regarding how to use the models

• This was resolved in the 2016 edition of the IEEE Recommended
Practices for Software Reliability.
• Overview of the models
• How to select the model(s)
• When to use them and when not to
• How to use with incremental development life cycle

© SoftRel, LLC 2020. This presentation may not be reprinted in whole
or part without written permission from amneufelder@softrel.com 28

Reliability Growth Model framework

© SoftRel, LLC 2020. This presentation may not be reprinted in whole or part without written permission from amneufelder@softrel.com

29

1. Collect date of
software failure,

severity and
accumulated

operational hours
between failures

2. Plot the data.
Determine if
failure rate is
increasing or
decreasing.

Observe trends.

3. Select the
model(s) that
best fits the

current trend

4. Compute failure
rate, MTBF,

MTBCF, reliability
and availability

5. Verify the accuracy
against the next actual

time to failure.
Compute the
confidence.

6. Assess defect pileup, effort
needed to reach a required
objective, effect on future

release if software is released
now

New defects discovered in testing

Example of defect discovery data plot

 In this example, the defect discovery rate is generally decreasing. There was one point
during testing in which it temporarily was increasing. This is why data needs to be
collected regularly and plotted regularly. 30

y = -857.97x + 117.77

-50
-30
-10
10
30
50
70
90

110
130
150

0 0.05 0.1 0.15 0.2

Defect discovery rate versus cumulative defects

Later
points

resemble
linear
trend

FR was
temporarily
increasing

here possibly
due to new

features
being added

Early in
testing the

trend
appears to

be
logarithmic

y intercept ͋

118 defects

Example of defect discovery data plot

In this example, the defect discovery rate (fault rate)
is increasing. This means that only a few models can
be used.

31

Example of defect discovery data plot

• In this example, the defect discovery rate increased
initially and then decreased steadily. In this case the
most recent data can be used to extrapolate the future
trend.

32

Selecting the reliability growth model(s)

Model name Inherent
defect count

Effort required
(1 low, 3 high)

Can be used when exact
time of failure unknown

Increasing fault rate
Weibull [B46] Finite/not fixed 3 Yes
Peaked fault rate
Shooman Constant Defect Removal
Rate Model[B61]

Finite/fixed 1 Yes

Decreasing fault rate
Shooman Constant Defect Removal
Rate Model[B61]

Finite/fixed 1 Yes

Linearly Decreasing
General exponential models
including:
• Goel-Okumoto [B47]
• Musa Basic Model[B45]
• Jelinski-Moranda [B48]

Finite/fixed 2 Yes

Shooman Linearly Decreasing
Model[B61]

Finite/fixed 1 Yes

Non-Linearly Decreasing
Musa-Okumoto (logarithmic) [B50] Infinite 1 Yes
Shooman Exponentially Decreasing
Model[B62]

Finite/fixed 3 Yes

Log-logistic [B51] Finite/fixed 3 Yes
Geometric [B52] Infinite 3 No
Increasing and then decreasing
Yamada (Delayed)
S-shaped [B53]

Infinite 3 Yes

Weibull [B46] Finite/not fixed 3 Yes

33

1. Eliminate
models that
don’t fit the
observed
trend.

2. Use all
applicable
models or
select the one
with least
effort.

3. Some models
expect exact
time of failure
which might
not be easy to
collect in
testing.

Bolded models are in normative section of IEEE 1633 Recommended Practices for Software Reliability, 2016

Some of the simpler models
Model Estimated

remaining
defects

Estimated current
failure rate

Estimated
current MTBF

Estimated current
reliability

Musa Basic N0 - n l(n) = l0 (1-(n/N0)) The inverse of the
estimated failure
rate

e-(l(n) * mission time)

Or

e-(l(t) * mission time)

Jelinski-
Moranda

λ(n)= k(N0-n)

Goel-
Okumoto

l(t) = N0ke-kt

34

Estimated initial
failure rate λ0

n/t

Estimated N0

K=(abs(1/slope))

n
Actual observed
initial failure rate λ0

θ = rate of decay

n – cumulative
defects
discovered in
testing to date
t – cumulative
hours of
operation in
testing to date

EXAMPLE WITH REAL DATA
n=84 defects discovered to date

T=1628 operational test hours to date

y = -857.97x + 117.77

-60

-40

-20

0

20

40

60

80

100

120

140

0 0.05 0.1 0.15 0.2Cu
m

ul
at

iv
e

Fa
ul

ts
 (n

)

Fault Rate n/t

Cumulative faults versus fault rate

X intercept = .137226
Slope = 117.77/.137226
k = .137225/117.77
Y intercept = 117.77

35

Example

36

Model Estimated
remaining
defects

Estimated current failure rate in
terms of failures per hours

Estimated
current MTBF
in hours

Estimated current
reliability as a
function of 8 hours
of mission time

Musa
Basic

 – n =
117.77-84
= 34
So 71% of
the defects
estimated
have been
removed.

(n) = (1-(n/) =
.137226*(1-84/117.77) = .03935

25.41366 hours e-(.03935 * 8)
= .772993

Jelinski-
Moranda

(n) = (-n) =
.001165*(117.77-84) = .03934

25.4181 hours e-(.03934 * 8)
= .772999

Goel-
Okumoto

(t) = =
117.77*.001165*e(-.001165*1628)
= .02059

48.56585 hours

e-(.02059 * 8) = .84813

Notice that 2 of the models have the same result. That’s because the
models use different unknowns which are based on the same
assumptions. Only one of them needs to be used by the practitioner.

Forecasting test hours needed to
reach a specific objective

37

∆t = additional test duration = (N0/λ0)* ln(λ0/λf)

Where:

- ∆t is the number of test hours required to meet the
objective

- N0 is the estimated inherent defects
- λ0 is the initial failure rate (the actual very first observed

failure rate from the first day of testing)
- λp is the objective or desired failure rate

Once the ∆t is computed, it should be divided by the number
of work hours per day or week to determine how many more
days or weeks of testing are required to meet the objective.

Conclusions

© SoftRel, LLC 2020. This presentation may not be reprinted in whole
or part without written permission from amneufelder@softrel.com 38

• It can be applied to COTS software as well as custom software
• A variety of metrics can be predicted
• The predictions can be used for sensitivity analysis and defect

reduction

Software reliability can be predicted before the
code is written using prediction/assessment
models

• Used to determine when to stop testing
• Used to quantify effort required to reach an objective
• Used to quantify staffing required to support the software once

deployed

Software reliability can be estimated during
testing using the reliability growth models

Frequently Asked Questions

• Can I predict the software reliability when there is an agile or incremental
software development lifecycle?
• Yes, your options are

• You can use the models for each internal increment and then combine the results of each
internal increment to yield a prediction for each field release

• You can add up the code size predicted for each increment and do a prediction for the field release based
on sum of all increment sizes

• How often are the predictions updated during development?
• Whenever the size estimates have a major change or whenever there is a

major review
• The surveys are not updated once complete unless it is known that

something on the survey has changed
• i.e. there is a major change in staffing, tools or other resource during

development, etc.

© SoftRel, LLC 2020. This presentation may not be reprinted in whole or part without written permission from amneufelder@softrel.com
39

Frequently Asked
Questions

• Which defect density prediction models are
preferred?
• The ones that you can complete accurately and the

ones that reflect your application type
• If you can’t answer most of the questions in a

particular mode survey then you shouldn’t use
that model

• If the application lookup charts don’t have your
application type you shouldn’t use them

• How can I get the defect density prediction models?
• Software Reliability Toolkit Training Class
• Software Reliability Toolkit
• Frestimate Software

© SoftRel, LLC 2020. This presentation may not be reprinted in whole or
part without written permission from amneufelder@softrel.com 40

References

• [1] “The Cold Hard Truth About Reliable
Software”, A. Neufelder, SoftRel, LLC, 2019

• [2]Four references are
a) J. McCall, W. Randell, J. Dunham, L.

Lauterbach, Software Reliability,
Measurement, and Testing Software
Reliability and Test Integration RL-TR-92-
52, Rome Laboratory, Rome, NY, 1992

b) "System and Software Reliability
Assurance Notebook", P. Lakey, Boeing
Corp., A. Neufelder, produced for Rome
Laboratory, 1997.

c) Section 8 of MIL-HDBK-338B, 1 October
1998

d) Keene, Dr. Samuel, Cole, G.F. “Gerry”,
“Reliability Growth of Fielded Software”,
Reliability Review, Vol 14, March 1994.

Copyright SoftRel, LLC 2013 41

Related Terms

• Error
• Related to human mistakes made while developing the software

• Ex: Human forgets that b may approach 0 in algorithm c = a/b

• Fault or defect
• Related to the design or code

• Ex: This code is implemented without exception handling “c = a/b;”

• Defect rate is from developer’s perspective

• Defects measured/predicted during testing or operation

• Defect density = defects/normalized size

• Failure
• An event

• Ex: During execution the conditions are so that the value of b approaches 0 and the software crashes or
hangs

• Failure rate is from system or end user’s perspective

• KSLOC
• 1000 source lines of code – common measure of software size

July 2020 43

HTTP://WWW.MISSIONREADYSOFTWARE.COM
SALES@SOFTREL.COM

321-514-4659

http://www.missionreadysoftware.com/
mailto:sales@softrel.com

	Slide Number 1
	Copyright	
	Software reliability timeline
	Software reliability modeling
	� Limitations of each type of modeling
	Predictions/Assessments
	Software reliability assessment goals and outputs
	If you can predict this defect profile, you can predict failure rate
	Industry framework for early software reliability predictions
	 If everything else is equal, more code means more defects �
	2. Available Methods for predicting defect density
	Assessment Based Defect Density Models
	How the Assessment Models Works
	Seven clusters used to predict defect density and ultimately software reliability
	3.Predict testing or fielded defects
	4. Identify shape of defect discovery profile
	Rate at which defects result in observed failures (growth rate)
	5. Use defect discovery profile to predict failure rate/MTTF
	6. Predict MTSWR (Mean Time To Software Restore) and Availability
	7. Predict mission time and reliability
	Confidence Bounds and prediction error
	��Predictions can be used for scheduling and maintenance
	��Sensitivity analysis and defect reduction
	��
	Research results revealed some surprises
		These are the 10 factors mostly strongly related to software reliability
	Reliability growth models used during testing
	Overview
	Reliability Growth Model framework
	Example of defect discovery data plot
	Example of defect discovery data plot
	Example of defect discovery data plot
	Selecting the reliability growth model(s)
	Some of the simpler models
	Example with real data
	Example
	Forecasting test hours needed to reach a specific objective
	Conclusions
	Frequently Asked Questions
	Frequently Asked Questions
	References
	Related Terms
	Slide Number 43

