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Introduction and 
Motivation

Reliable 
software 

engineering…

• Process assessments such as the SEI CMMi
assessment have not provided value added for 
improving reliability or safety of software

• 30 years of data shows [1]
• No improved software reliability beyond level 3
• Organizations with CMMi level 3+ can and do produce 

failed software programs
• A good process is necessary but not sufficient
• An organization can have a great process and still have

• People who do not understand the product or industry 
doing development and test

• Low level of rigor in testing
• Requirements that are traceable but poorly written 
• Design that is traceable but poorly written
• Test procedures that are traceable but poorly written 

and have low coverage
• Overlooked failure modes
• Too many unknown defects in the software
• Too many known open defects that aren’t assessed

appropriately 
• Too many workarounds in the software that burden 

the end users and/or cause loss of availability
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Introduction and Motivation

Reliable software engineering…
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Has been an 
engineering disciple 
for > 50 years.  

Fundamental 
prerequisite for 
virtually all modern 
systems 

Plenty of theory 
generated over last 
several decades, 
but…Practical 
guidance on how to 
apply these models 
has lagged 
significantly

Diverse set of 
stakeholders 
requires pragmatic 
guidance and tools 
to apply software 
reliability models to 
assess real software 
or firmware projects 
during each stage of 
the software 
development 
lifecycle

Fundamental roadblocks addressed by IEEE 
1633
• Reliability engineers don’t understand software
• Software engineers don’t understand reliability
• Both may have challenges acquiring data 

needed for the analyses



Solutions 
provided by IEEE 
1633

Actionable step by 
step procedures for 
assessing reliable 
software

During any phase of 
software or firmware 
development 

With any software 
lifecycle model for any 
industry or application 
type.

• Reliable software is demonstrated by both qualitative 
and quantitative evidence

• Fact based decisions for releasing software based on 
qualitative and quantitative aspects

• Quantitative measures are the demonstration that 
software is reliable

• Qualitative measures provide confidence that  
quantitative measures are accurate
• The easiest way to record software fewer defects is to test 

less or test with less rigor
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Qualitative

Level of rigor in testing including
• Test Like You Operate
• Fault injection testing
• Peak loading and endurance testing
• Boundary and zero value testing
• Code coverage
• Go-No go testing
• Requirements coverage

Failure mode identification against the 
“Common Defect Enumeration” or 
known set of software failure modes 
and/or fault tree analysis

Defect root cause analysis

Qualitative

Estimated portion of system failures 
that will be due to software

Rate of defect discovery in testing

Fix rate versus open rate

Estimated residual defects and 
potential for pileup

Severity level/effect of unresolved 
defects

Defect density benchmark

Coverage metrics



Collect SW failure 
data 

Clause 5.4.4 

Testing for reliable 
software

Clause 5.4.1-5.4.3 

Allocate reliability goals 
to software components 

Clause 5.3.5

Benchmark software 
reliability early 

Clauses 5.3.2, 6.2

Include software in the 
system reliability model 

Clause 5.3.4
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Make a fact based release decision 
Clause 5.5 

Failure modes 
analysis 

Clause 5.2, 5.4.8 

Plan the reliable software Clause 5.1

Evaluate reliability of software during 
testing and operation

Clauses 5.4.4-5.4.7, 6.3

List of software configuration items (CI), failure 
definition scoring criteria, assessment of key risks 
that can derail the software program

Portion of total 
failures due to SW

Predicted 
reliability 
measures for 
each CI

Measurable 
goals for each 
SW CI

Failure modes 
typically overlooked 
in testing

Test results, 
Level of rigor

Defect 
discoveries 
over usage 
time

Test coverage, failure mode resolution, progress against reliability goals  

All IEEE 1633 clauses 
provide support for a 
fact-based release 
decision



Current status of 
IEEE 1633

• Unanimously approved by IEEE 
Standards Association in first ballot of 
May 24, 2016. Released on January 18, 
2017.

• Working group is currently making 
updates for 
• How reliable software tasks are executed in 

DevSecOps

• Common Defect Enumeration recently 
published on the Defense Acquisition 
University R&M Community of Practice 
website
• https://www.dau.edu/cop/rm-

engineering/_layouts/15/WopiFrame.aspx?sour
cedoc=/cop/rm-
engineering/DAU%20Sponsored%20Documen
ts/Reliable%20Software%20SOW%20Appendi
x%20B%20-%20CDE.xlsx&action=default

• Level of rigor in testing 
7



Quantitative

• Exactly “1” quantitative measure 
should not be used as a release 
decision maker

• Ex: Defects per source line of code or
failures per hour should not be used 
without other metrics

• No one metric tells the whole story
• It’s too easy for one metric to be a self-

fulfilling prophecy. 
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Quantitative

Estimated portion of 
system failures that will be 
due to software

Rate of defect discovery in 
testing

Fix rate versus open rate

Estimated residual defects 
and potential for pileup

Severity level/effect of 
unresolved defects

Defect density benchmark

Coverage metrics



9

Estimated portion of system 
failures due to software• Past history method is very accurate if the past 

history is recent and is calibrated for changes in 
technology.  
• As a rule, software grows 10-12% per year. So, 
historical data should be calibrated to assume that 
the software portion is growing 10-12% per year.
• There is virtually no chance that software will 
decrease in size over time. Hence past history is a 
useful lower bound.
• Real example: An engineering company 
produced a system in 2015. Of all of the deployed 
failures, 25% were due to software.  In 2017 they 
were deploying a similar system. 
• Since historical data was 2 years old,  25% is 
adjusted by 10-12 % per year.  
• So,  the prediction is between 30.25% and 
31.36%.   
• When the equipment was deployed in 2019 -
the actual portion of failures due to software was 
33%.  Much more accurate than the 5% estimated 
by subject matter experts.
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Method Description
Past 
history

Compute relative 
portion of SW versus 
HW failures from a 
past similar system

R&D $ Compute relative 
portion of R&D $ 
dedicated to software 
development

Achievabl
e failure 
rates

Use prediction models 
to determine failure 
rate for HW, SW.  The 
predicted values for 
each determine their 
allocation.

Value added: Engineering has
no basis for assuming that
software doesn’t fail or that 
the reliability = 1
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Rate of defect 
discovery in 
testing

• Software fault rate increases, peaks and then decreases prior to 
maturity

• Maturity level at deployment separates the world class from the 
distressed

• Increasing fault rate– the customers will see it as a failed product 
in 100% of all cases

• Fault rate barely decreasing- customers will be unhappy with it 
• Fault rate is steadily decreasing – customers won’t notice the SW 

which is ultimate indicator of success
• With agile or incremental development there are multiple peaks 

until the final burn down of defects
• We cover how to track fault rate during testing in the IEEE 1633 

clause 5.4.4
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Metric World 
Class

Mediocre Distressed

Fault rate 
trend

Steadily 
decreasing

Peaking or 
recently 
peaked

Increasing

Percentage 
of defects 
identified 
prior to 
deployment 
versus post 
deployment

>=75% 40-74% <=39%

0

2

4

6

8

10

12
N

on
 C

um
ul

at
iv

e 
de

fe
ct

s 
di

sc
ov

er
ed

Usage/test time

Defects discovered over life of versionFailed projects 
deploy prior to  
peak  when <= 
39% of defects 
are removed

Mediocre projects 
deploy between 40% 

and 75% of area 
under curve

Successful 
projects deploy 
at > 75% of the 
area under this 

curve

Value added: Ensures software 
isn’t deployed half baked



Lessons learned from a real software intensive program 
in which defect discovery rate was not tracked

This is the defect rate from a distressed software intensive program

The organization released the software to operational deployment before the fault 
rate peaked.

That’s because no one was trending the fault rate.

More than 800 software failures were discovered by customer after deployment.

Upon deployment, the actual system reliability was 8 % of the required reliability 
objective because of the software failures.

If SWRG models had been used prior to deployment, the service would not have 
accepted the software as is since the RAM goal had not been met.
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increasing fault 
rate



Lessons learned from a real software intensive program in which 
defect discovery rate was tracked

This is the fault rate from a real software intensive program

• The fault rate is clearly trending downwards

• By the end of the trend, approximately 80% of defects had been discovered (The IEEE 1633 
shows how to calculate this)

• There was still work to be done with regards to defect removal but the software is stable.

• The SWRG model provides confidence that the overall RAM objective can be met and the 
work required to meet it
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Fix rate 
versus open 
rate

13

If the discovered defects aren’t 
removed - the defect discovery 
trend won’t improve very far 
beyond the peak
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Increase is 
caused by 
blocking 
defects

Peak is reached 
when blocking 

defects are either 
fixed or avoidable

Stability cannot 
be reached if 

defects are not 
fixedValue added: A stable defect 

discovery profile won’t happen 
if the defects aren’t removed
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Estimated residual 
defects and potential 
for pileup

• Releases are too far 
apart initially and too 
close together in last 3 
releases

• SRE predictions 
allowed for leveling of 
features before the 
code is even written 0

5

10

15

20

25

Total faults predicted (nominal case) 
from releases 1 to 5 predicted for each 

month

Value added: An early sprint or 
release might be stable; but at  
planned cadence eventually 
future sprints or releases 
won’t be

Presenter Notes
Presentation Notes
In the above example, 5 releases were predicted and then superimposed.  You can see that the last 3 releases are too close together because the defects from the previous release(s) are predicted to build up.
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Severity/effect of 
unresolved defects

15

It’s possible to have a decreasing 
defect trend and defects that aren’t 
piling up but still have unreliable 
software because there are open 
defects that the user can’t experience

1. A single defect causes multiple failures
2. The same failure happens at every

installed site at the same time
3. A collection of defects “with

workarounds” collectively cause the
user to have unacceptable downtime

4. One “reset” could happen so often
that the system is unusable

5. The worst software failures often
happen when the software is
executing

6. Systematic software failures need to
be counted as a failure every time 
they occur until the underlying failure 
mode is proven to be removed or 
mitigated

Value added: Software isn’t like hardware. 
Software can have the following failures that 
typically don’t happen with hardware.  
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Defect density 
benchmarking 
statistics

 Tables like this are 
derived from actual 
field data [1][2]

 Organizations with 
lowest deployed 
defect density were 
also late less often 
and by a smaller 
amount

 SRE for any given 
project can be 
benchmarked by 
answering a simple 
survey

Cluster Outcome

Defect metrics
Late deliveries (as 
per SW estimates)

Average 
defects 
per 1000 
source 
lines of 
code

% defects 
removed 
prior to 
release Fault rate

Prob
(late)

How much 
project is 
late by as 
% of 
schedule

3% World Class .0269
>75%

Steadily 
decreasing

40 12
10% Successful .0644 20 25

25%
Above 

average .111

40-75%

Recently 
peaked or 

recently 
decreasing

17 25
50% Average .239 34 37

75%
Below 

average .647 85 125
90% Impaired 1.119

<40%
Increasing 
or peaking

67 67
97% Distressed 2.402 83 75
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Value added: The defect 
profile can be predicted before 
testing even starts. Sometimes 
one bad development practice 
can derail the program.  You 
don’t want to wait until testing 
or operation to find that out.

Presenter Notes
Presentation Notes
The benchmarking shows 7 distinct clusters of data.  The “3 percentile” cluster has defect density that’s smaller than 97% of those in the database, therefore earning the description “world class”.  The average defect density of this cluster is .0269 defects per KSLOC of normalized code.  The smallest defect density in this cluster and therefore in the database is .00555.  The largest defect density for the world class cluster is .0519.  The standard deviation of the defect density for the world class group is .0182.  For those projects that were in the successful cluster they were late 40% of the time.  However, they were only late by an average of 12%.  At the other end of the data is the 97% group which had defect density that was larger than 97% of the database.  The projects in this cluster were seriously distressed.  The average defect density is 2.402.  The largest defect density in this cluster and therefore the database is 3.4.  The standard deviation for this cluster was .791.  The distressed cluster was late 85% of the time.  What’s worse is that when they were late it was a margin of an average of 75%.  The other 5 clusters fall between these two extremes. 



Factors that have 
been 
mathematically 
proven to be related 
to software 
reliability [1][2]

USAF Rome Laboratories 
developed first prediction 
model in 1987[2].  It was 
based on these factors.

A few more have been 
developed since then.

Facts don’t lie. All 
predictive models agree 
that how the software is 
developed is a good 
predictor for its ultimate 
reliability.

Static analysis 
tools measure 

these

SEI CMMi and 
ASPICE assess 

this

These are 
often 

overlooked

Type of 
factor

Number /% of 
characteristics 
in this category

Examples of characteristics in this 
category

Product 50 – (10%) Size, complexity, whether the 
design is object oriented, 
whether the requirements are 
consistent, code that is old 
and fragile, etc.

Product 
risks

12 – (2%) Risks imposed by end users, 
government regulations, 
customers, product maturity, 
etc.

People 38 – (7%) Turnover, geographical 
location, amount of noise in 
work area, number of years of 
experience in the applicable 
industry, number of software 
people, ratio of software 
developers to testers, etc.

Process 121 – (23%) Procedures, compliance, exit 
criteria, standards, etc.

Technique 302 – (58%) The specific methods, 
approaches and tools that are 
used to develop the software.  
Example: Using a SFMEA to 
help identify the exceptions 
that should be designed and 
coded.

These are 
often 

overlooked
17



Techniques that have been proven to effect software reliability that 
are often overlooked 

Category Examples
Decomposition • Code a little, test a little philosophy.  

• Release development/test time < 18 months long and preferably <12 
months.  

• Each developer has a schedule that is granular to day or week. 
Visualization with 
pictures and tables

A picture is worth 1000 words.  Specifications with diagrams/pictures/tables
are associated with fewer defects than text.

Requirements focus Developing requirements that aren’t missing crucially important details

Testing focus/rigor Explicitly testing the requirements, design, stresses, lines of code, 
operational profile

Unit testing focus Unit testing by every software engineer is mandatary and as per a defined 
template. Branch coverage tools and metrics.  

Defect reduction 
techniques

Software fault trees, software FMEA, etc.

Design focus Designing states, sequences, timing, logic, algorithms, error handling before 
coding 

Regular monitoring 
of the software 
engineers

Monitoring software progress daily or weekly, identifying risks early, etc.

Planning ahead Planning the scope, personnel, equipment, risks before they become 
problematic, planning the timing of the tasks

18



Coverage metrics

• These metrics put the defect profile observed in testing into 
perspective

• Ex: If only half of the requirements are covered or half of the 
code has been executed in testing then the reliability growth 
progress is optimistic by at least 50%. (i.e. total defects are 
at least twice what have been observed so far)
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Software 
Metrics

Definition

Requirements 
Traceability

Degree to which the 
requirements have been met by 
the architecture, code and test 
cases

Structural 
coverage

Degree to which the lines of 
code, paths, and data have 
been tested

Value added: The estimated 
fault trend and remaining 
defects are only as accurate as 
the amount of code and 
requirements that have been 
covered.



Qualitative
• An organization can have excellent 

quantitative measures but still 
have unknown failures that cause 
serious problems for end users

• This is because every
development activity is designed
for success.

• Engineering calls these failures 
“edge” cases

• But really these failure modes 
were detectable all along. They
just chose not to look for them or
design to them.
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Qualitative

Level of rigor in testing including
• Test Like You Operate
• Fault injection testing
• Peak loading and endurance 

testing
• Boundary and zero value testing
• Code coverage
• Go-No go testing
• Requirements coverage

Failure mode identification against 
the “Common Defect 
Enumeration” or known set of 
software failure modes and/or 
fault tree analysis

Defect root cause analysis

Value added: Reliable software is 
achievable only when software is 
designed to avoid failure.



Develop a 
reliability test 
suite to 
maximize the 
level of rigor
Contrary to 
popular belief 
testing only the 
requirements is 
rarely 
sufficient. 
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Type of test Inputs Description
Black box testing
Operational
profile testing

The Operational Profile 
(OP) 

Also known as “Test Like You 
Operate”

Requirements
based testing

The software 
requirements

Exercises the SUT to provide 
assurance that it satisfies its 
requirements as specified. 

Model based
testing

Test models may be 
derived from 
requirements and design 
documentation.

Exercises state transitions, fault 
states, dead states, prohibited 
states

Stress case
testing

Expected longest 
mission time and max 
concurrent users

Peak loading, endurance, zero 
value testing, boundary values, 
go no-go testing

Timing and
performance

Timing and scheduling 
diagrams, performance 
requirements, the 
effects of software on 
the system design

Exercises the SUT to evaluate 
compliance with requirements 
for real-time deadlines, resource 
utilization.  

Failure modes
– See next
slide

Software FMEA, defect 
root cause analysis, fault 
trees

Exercises the conditions that are 
associated with the identified 
failure modes.  This is the only 
test that verifies that software 
works properly in a degraded 
environment.

Value added: 
These tests often 
identify defects 
that are the most 
severe and most 
expensive to fix 
once deployed



Analyze failure 
modes and effects

• Problem: Engineers will 
often consider failure 
modes that are so obvious 
that they are guaranteed 
to be found in testing – or 
they will consider failure 
modes that aren’t fixable in 
the software. 

• There are over 400 failure 
mode/root causes that are 
at least relevant to all 
software systems.  

• The failure modes are 
tagged to actual failures 
from mission and safety 
critical systems since 1962
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Software 
failure mode

Description

Faulty state 
management

Inadvertent state transitions, dead states, 
state transitions are incorrect, etc.

Faulty 
sequencing

Operations execute in the wrong order 

Faulty timing Operations start too early or too late or take 
too long. The right event happens in the right 
order but at the wrong time

Faulty data The data is the wrong units of measure, 
scale, resolution, type, size, stale, corrupt, 
missing.

Faulty 
functionality

The system does the wrong thing or does the 
right thing incorrectly

Faulty error 
detection

The software fails to detect faults in the 
hardware, communication, computations, 
power, external components or devices, 
computations, etc.

Faulty 
processing

Software accuracy or memory degrades over 
mission, software can’t handle peak loading 
or maximum users

Value added: Virtually 100% [3] of the software failure modes that have cause problems in 
operation are due to the above categories which are often overlooked.



History repeats 
itself. 

Root causes are 
predictable but 
only if someone 
thinks about 
them.

• Faulty error handling – Apollo 11 lunar landing, ARIANE5, 
Quantas flight 72, Solar Heliospheric Observatory 
spacecraft, Denver Airport, NASA Spirit Rover (too many 
files on drive not detected)

• Faulty data definition - Ariane5 explosion 16/64 bit
mismatch, Mars Climate Orbiter Metric/English mismatch, 
Mars Global Surveyor, 1985 SDIO mismatch, TITANIV wrong 
constant defined

• Fault logic– AT&T Mid Atlantic outage in 1991
• Timing - SCUD missile attack Patriot missile system, 2003 

Northeast blackout
• Race condition - Therac 25

• Peak load conditions - Affordable Health Care site launch, 
Iowa Primary 

• Faulty usability
• Too easy for humans to make mistakes – AFATDS 

friendly fire, PANAMA city over-radiation
• Insufficient positive feedback of safety and mission 

critical commands –

The above illustrates that history keeps repeating itself 
because people assume root causes from other 
industries/applications are somehow not applicable.

Lesson to be learned – the root causes are applicable to 
any industry/product.  It’s the hazards/effects that result 
from the root causes that are unique.
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Software failure modes effects analysis are highly effective 
but only if the below 17 mistakes are avoided

Organizational mistakes
• None of the software FMEA analysts 

have a background in software

• The analysis is not constructed by a cross 
functional team

• Conducting the SFMEA too late (most of 
these failure modes are too expensive to 
fix once the code is written)

• Conducting the SFMEA without the 
proper software deliverables such as the 
SRS, SDD, IRS, etc.

• Failing to track the failure modes and/or 
make any corrective actions to the 
requirements, design, code, use case, 
users manual as a result of the SFMEA

• Failing to tailor the software FMEA to the 
highest risk areas and most relevant 
failure modes 

Faulty Assumptions
• Assumption that all 

failures originate in a 
single line of code or 
specification

• Assumption that software 
works

• Assumption that software 
specifications are correct 
and complete 

• Assumption that all failure 
modes will be found and 
fixed in testing

• Assumption that all failure 
modes are impossible or 
negligible in severity

FMEA Execution mistakes
• Focusing on total failure of the software 

- failing to consider small things that 
lead to big things going wrong

• Black box versus functional approach –
analyze what the software does and not 
what it is

• Ignoring the 6 dimensions that lead to 
software failures - the system, the users 
who use the system, the battlefield 
environment, and the mission

• Conducting the SFMEA at too high 
(system requirements) or too low (lines 
of code) a level or architecture

• Mixing functional failure modes with 
process failure modes (i.e. fault timing 
means the software design not the 
software schedule)

• Incorrectly assigning a failure rate or 
likelihood

Value added: The IEEE 1633 explains out how to apply the FMEA so that the 17 
common mistakes are minimized. The recommended practice can be applied to any 
industry FMEA standard for framework.

Presenter Notes
Presentation Notes
Audio: Even when the SFTAs are executed properly there are still some limitations…Expertise of the analysis is very important as mentioned before.  You do your best when wrong - next time you’ll think of it.  Experience grows & we need to communicate so as to take advantage of others knowledge & experience.  It is impossible to identify all faults and causes of faults (FTA will probably always be incomplete.)



FAULTY ASSUMPTION THAT ALL FAILURE MODES ORIGINATE IN A SINGLE LINE 
OF CODE
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Line of code #1
Line of code #2
Line of code #3
Line of code #4
Line of code #5
Line of code #6

…..

Line of code fails 
to execute

Line of code 
terminates

The analysts work through each line of 
code one at a time and analyze against 
statement each CDE one at a time.

This is ineffective because:
1. Very few failures are due to a single line of 

code [3]
2. When a failure is due to a single line of code 

it is usually due to mistakes like these
• Line of code executes the wrong 

command (i.e. has a compilable typo)
• Line of code manipulates the wrong 

data
• Line of code uses isn’t written properly 

but still compiles
3. Lines of code typically don’t fail to execute 
unless there is a defect in another line of code
4. If a line of code terminates execution it is 
often because there is missing fault handling or 
by faulty design



FAULTY ASSUMPTION THAT ALL FAILURE MODES ORIGINATE IN A SINGLE 
SPECIFICATION
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SRS #1
SRS #2
SRS #3
SRS #4
SRS #5
SRS #6

…..

CDE #1
CDE #2
CDE #3
CDE #4
CDE #5
CDE #6

…..

The analysts work through each SRS 
statement one at a time and analyze 
against statement each failure mode 
one at a time.

This is ineffective because:
1. Majority of operational defects aren’t 

caused by a single faulty statement [3]
2. Many of the common defect 

enumerations don’t apply at the 
statement level – they apply to a 
collection of statements

3. Primary failure mode at an individual
specification is magic numbers (i.e.
timing or accuracy requirements. )

INCOSE requirements analyzers are effective at identifying requirements 
statements that are ambiguous or untestable.



MANY FAILURES ARE DUE TO A COLLECTION OF SOFTWARE SPECIFICATIONS, 
MISSING SPECIFICATIONS AND MULTIPLE LINES OF CODE
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Analyze the collection of 
software requirements against 
the set of CDEs
1. Prune the CDEs to remove 

things you don’t have in the 
software

2. Analyze the specifications 
and design as a whole 
package against the relevant 
CDEs

SRS #1
SRS #2
SRS #3
SRS #4
SRS #5
SRS #6

…..

CDE #1
CDE #2
CDE #3
CDE #4
CDE #5
CDE #6

…..

Value added: The Common Defect Enumeration lays out the failure modes 
that have caused the most failures in operation. The CDE can be used in any 
FMEA framework or industry standard.  



Include software in a system fault tree
• A “software” fault tree should be part of an overall system fault tree to ensure 

that interactions with hardware are considered

• The fault tree can feed the software FMEA
• The hazards are tagged to the top level effects in the SFMEA
• If the SFMEA is effective it will cover every hazard 

• The software FMEA can feed the FTA
• It may/will identify hazards that weren’t considered in the FTA, PHA, FHA
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Value added: A fault tree can jump start the software FMEA to ensure that the most likely 
failure modes tagged to the most serious hazards are considered.
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Software defect root cause analysis
• The defect RCA can be employed all by itself or prior to a software 

FMEA
• Defect RCA ensures that fault injection testing, design reviews, 

specification reviews, and code reviews, focus on the most relevant 
root causes for the application under development

• Defect RCA has 3 viewpoints
• Defects by originating artifact

• Contrary to popular belief most defects found in operation are not
“coding” defects. They are specification and design defects that led to 
coding defects.

• Defects by failure mode
• Faulty timing, sequencing, state management, error handling,

functionality, processing, logic, interfaces, etc.
• Defects by root cause

• See the Common Defect Enumeration [2]
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Value added: Failure modes that have happened in the recent past are the most likely to 
happen again.  That’s because software engineers usually fix one instance of a defect but 
don’t fix related systematic instances.



Software defect root cause analysis

The most common failure mode is directly related to the weakest link in the 
development activity. Examples: 

• If the software engineers fail to consider that software must detect failures in hardware there 
will be more faulty error handling failure modes

• If the software engineers fail to do state diagraming prior to coding and the system is 
stateful; state management defects are more likely

• If the software engineers fail to do timing design and timing is important for the application; 
timing defects are more likely

30
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Software defect root cause analysis

Defects are introduced because of either bad requirements, bad design, 
bad coding practices or bad change control.   

• Requirements defect – The “whats” are incorrect, ambiguous or incomplete.  

• Design defect – The “whats” are correct but the “hows” are not.  Logic, state, 
timing, exception handling are all design related.

• Coding defect- The “whats” and “hows” are correct but the software engineer 
did not implement one or more lines of code properly. 31

0
1
2
3
4
5
6
7
8
9

Detailed design Requirements Maintenance
change

External change Coding Installation
package

Usability

N
um

be
r o

f d
ef

ec
ts

Activity/Artifact introducing defect

Defects by originating artifact or activity



Software defect root cause analysis

Each of the failure modes has multiple root causes as per the Common 
Defect Enumeration [2]
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Summary
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IEEE 1633 2016 puts forth 
recommended practices 

to apply qualitative 
software failure modes 

analyses and qualitative 
models 

Improve product and ensure 
software or firmware 

delivered with required 
reliability

IEEE 1633 2016 
includes improved 

guidance over 2008 
edition

Offers increased value to this 
audience

• Reliability engineers 
• Software quality engineers 
• Software and engineering 

managers
• Acquisitions
• Regulatory

IEEE 1633 2023 will 
make following 
improvements

Incorporates

• Common defect 
enumeration

• Tailoring for DevSecOps
• Updated models
• Refined guidance
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