
1

HTTP://WWW.MISSIONREADYSOFTWARE.COM
321-514-4659

An overview of the IEEE 1633 Recommended
Practices for Software Reliability

Ann Marie Neufelder
ann.neufelder@missionreadysoftware.com

• Introduction and motivation to product this guidance
• Solutions provided by the guidance
• Quantitative and qualitative reliability measures for making a software release decision

http://www.missionreadysoftware.com/

2

IEEE 1633 Working Group members
• Robert Stoddard - SEI
• Lance Fiondella - UMass
• Peter Lakey - Consultant
• Robert Binder – retired
• Michael Siok – Lockheed Martin
• Ming Li - NRC
• Ying Shi - NASA
• Nematollah Bidokhti - thinkDFR
• Thierry Wandji – US Navy
• Michael Grottke - FAU
• Andy Long - OSD
• George Stark - IBM
• Allen Nikora - NASA
• Bakul Banerjee – retired IEEE
• Debra Greenhalgh Lubas – US Navy
• Mark Sims – US Army
• Rajesh Murthy - Consultant
• Willie Fitzpatrick – US Army
• Mark Ofori-kyei – General Dynamics
• Sonya Davis – General Dynamics

2

• Burdette Joyner – Northrup
Grumman

• Marty Shooman –retired NASA
• Andrew Mack
• Loren Garroway – Northrup

Grumman
• Kevin Mattos– US Navy
• Kevin Frye - US Navy
• Claire Jones - Boeing
• Robert Raygan - OSD
• Mary Ann DeCicco – General

Dynamics
• Shane Smith - OSD
• Franklin Marotta – US Army
• David Bernreuther – US Army
• Martin Wayne – US Army
• Nathan Herbert – US Army
• Richard E Gibbs III - Boeing
• Harry White - Harmonic
• Jacob Axman – US Navy

• Ahlia T. Kitwana - Harris
• Yuan Wei
• Darwin Heiser – General

Dynamics
• Brian McQuillan – General

Dynamics
• Kishor Trivedi – Duke

University
• Debra Haehn – Philips

Healthcare

Chair: Ann Marie Neufelder,
Mission Ready Software
Vice Chair: Lance Fiondella -
UMass
Secretary: Rachel Neufelder,
Mission Ready Software
IEEE Standards Association
Chair: Louis Gullo, Northrop
Grumman

Martha Wetherholt of NASA was Vice Chair until her passing in 2020.
She was instrumental in delivering the 2016 edition.

Introduction and
Motivation

Reliable
software

engineering…

• Process assessments such as the SEI CMMi
assessment have not provided value added for
improving reliability or safety of software

• 30 years of data shows [1]
• No improved software reliability beyond level 3
• Organizations with CMMi level 3+ can and do produce

failed software programs
• A good process is necessary but not sufficient
• An organization can have a great process and still have

• People who do not understand the product or industry
doing development and test

• Low level of rigor in testing
• Requirements that are traceable but poorly written
• Design that is traceable but poorly written
• Test procedures that are traceable but poorly written

and have low coverage
• Overlooked failure modes
• Too many unknown defects in the software
• Too many known open defects that aren’t assessed

appropriately
• Too many workarounds in the software that burden

the end users and/or cause loss of availability

3

Introduction and Motivation

Reliable software engineering…

4

Has been an
engineering disciple
for > 50 years.

Fundamental
prerequisite for
virtually all modern
systems

Plenty of theory
generated over last
several decades,
but…Practical
guidance on how to
apply these models
has lagged
significantly

Diverse set of
stakeholders
requires pragmatic
guidance and tools
to apply software
reliability models to
assess real software
or firmware projects
during each stage of
the software
development
lifecycle

Fundamental roadblocks addressed by IEEE
1633
• Reliability engineers don’t understand software
• Software engineers don’t understand reliability
• Both may have challenges acquiring data

needed for the analyses

Solutions
provided by IEEE
1633

Actionable step by
step procedures for
assessing reliable
software

During any phase of
software or firmware
development

With any software
lifecycle model for any
industry or application
type.

• Reliable software is demonstrated by both qualitative
and quantitative evidence

• Fact based decisions for releasing software based on
qualitative and quantitative aspects

• Quantitative measures are the demonstration that
software is reliable

• Qualitative measures provide confidence that
quantitative measures are accurate
• The easiest way to record software fewer defects is to test

less or test with less rigor

5

Qualitative

Level of rigor in testing including
• Test Like You Operate
• Fault injection testing
• Peak loading and endurance testing
• Boundary and zero value testing
• Code coverage
• Go-No go testing
• Requirements coverage

Failure mode identification against the
“Common Defect Enumeration” or
known set of software failure modes
and/or fault tree analysis

Defect root cause analysis

Qualitative

Estimated portion of system failures
that will be due to software

Rate of defect discovery in testing

Fix rate versus open rate

Estimated residual defects and
potential for pileup

Severity level/effect of unresolved
defects

Defect density benchmark

Coverage metrics

Collect SW failure
data

Clause 5.4.4

Testing for reliable
software

Clause 5.4.1-5.4.3

Allocate reliability goals
to software components

Clause 5.3.5

Benchmark software
reliability early

Clauses 5.3.2, 6.2

Include software in the
system reliability model

Clause 5.3.4

6

Make a fact based release decision
Clause 5.5

Failure modes
analysis

Clause 5.2, 5.4.8

Plan the reliable software Clause 5.1

Evaluate reliability of software during
testing and operation

Clauses 5.4.4-5.4.7, 6.3

List of software configuration items (CI), failure
definition scoring criteria, assessment of key risks
that can derail the software program

Portion of total
failures due to SW

Predicted
reliability
measures for
each CI

Measurable
goals for each
SW CI

Failure modes
typically overlooked
in testing

Test results,
Level of rigor

Defect
discoveries
over usage
time

Test coverage, failure mode resolution, progress against reliability goals

All IEEE 1633 clauses
provide support for a
fact-based release
decision

Current status of
IEEE 1633

• Unanimously approved by IEEE
Standards Association in first ballot of
May 24, 2016. Released on January 18,
2017.

• Working group is currently making
updates for
• How reliable software tasks are executed in

DevSecOps

• Common Defect Enumeration recently
published on the Defense Acquisition
University R&M Community of Practice
website
• https://www.dau.edu/cop/rm-

engineering/_layouts/15/WopiFrame.aspx?sour
cedoc=/cop/rm-
engineering/DAU%20Sponsored%20Documen
ts/Reliable%20Software%20SOW%20Appendi
x%20B%20-%20CDE.xlsx&action=default

• Level of rigor in testing
7

Quantitative

• Exactly “1” quantitative measure
should not be used as a release
decision maker

• Ex: Defects per source line of code or
failures per hour should not be used
without other metrics

• No one metric tells the whole story
• It’s too easy for one metric to be a self-

fulfilling prophecy.

8

Quantitative

Estimated portion of
system failures that will be
due to software

Rate of defect discovery in
testing

Fix rate versus open rate

Estimated residual defects
and potential for pileup

Severity level/effect of
unresolved defects

Defect density benchmark

Coverage metrics

9

Estimated portion of system
failures due to software• Past history method is very accurate if the past

history is recent and is calibrated for changes in
technology.
• As a rule, software grows 10-12% per year. So,
historical data should be calibrated to assume that
the software portion is growing 10-12% per year.
• There is virtually no chance that software will
decrease in size over time. Hence past history is a
useful lower bound.
• Real example: An engineering company
produced a system in 2015. Of all of the deployed
failures, 25% were due to software. In 2017 they
were deploying a similar system.
• Since historical data was 2 years old, 25% is
adjusted by 10-12 % per year.
• So, the prediction is between 30.25% and
31.36%.
• When the equipment was deployed in 2019 -
the actual portion of failures due to software was
33%. Much more accurate than the 5% estimated
by subject matter experts.

9

Method Description
Past
history

Compute relative
portion of SW versus
HW failures from a
past similar system

R&D $ Compute relative
portion of R&D $
dedicated to software
development

Achievabl
e failure
rates

Use prediction models
to determine failure
rate for HW, SW. The
predicted values for
each determine their
allocation.

Value added: Engineering has
no basis for assuming that
software doesn’t fail or that
the reliability = 1

10

Rate of defect
discovery in
testing

• Software fault rate increases, peaks and then decreases prior to
maturity

• Maturity level at deployment separates the world class from the
distressed

• Increasing fault rate– the customers will see it as a failed product
in 100% of all cases

• Fault rate barely decreasing- customers will be unhappy with it
• Fault rate is steadily decreasing – customers won’t notice the SW

which is ultimate indicator of success
• With agile or incremental development there are multiple peaks

until the final burn down of defects
• We cover how to track fault rate during testing in the IEEE 1633

clause 5.4.4

10

Metric World
Class

Mediocre Distressed

Fault rate
trend

Steadily
decreasing

Peaking or
recently
peaked

Increasing

Percentage
of defects
identified
prior to
deployment
versus post
deployment

>=75% 40-74% <=39%

0

2

4

6

8

10

12
N

on
 C

um
ul

at
iv

e
de

fe
ct

s
di

sc
ov

er
ed

Usage/test time

Defects discovered over life of versionFailed projects
deploy prior to
peak when <=
39% of defects
are removed

Mediocre projects
deploy between 40%

and 75% of area
under curve

Successful
projects deploy
at > 75% of the
area under this

curve

Value added: Ensures software
isn’t deployed half baked

Lessons learned from a real software intensive program
in which defect discovery rate was not tracked

This is the defect rate from a distressed software intensive program

The organization released the software to operational deployment before the fault
rate peaked.

That’s because no one was trending the fault rate.

More than 800 software failures were discovered by customer after deployment.

Upon deployment, the actual system reliability was 8 % of the required reliability
objective because of the software failures.

If SWRG models had been used prior to deployment, the service would not have
accepted the software as is since the RAM goal had not been met.

0

20

40

60

80

100

120

140

160

180

Defects discovered over usage time

Software was
released here
with an
increasing fault
rate

Lessons learned from a real software intensive program in which
defect discovery rate was tracked

This is the fault rate from a real software intensive program

• The fault rate is clearly trending downwards

• By the end of the trend, approximately 80% of defects had been discovered (The IEEE 1633
shows how to calculate this)

• There was still work to be done with regards to defect removal but the software is stable.

• The SWRG model provides confidence that the overall RAM objective can be met and the
work required to meet it

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600 800 1000 1200 1400 1600 1800

N
on

 cu
m

ul
at

iv
e

un
iq

ue
 d

ef
ec

ts

Usage time

Defects discovered over usage time

13

Fix rate
versus open
rate

13

If the discovered defects aren’t
removed - the defect discovery
trend won’t improve very far
beyond the peak

0

2

4

6

8

10

12

De
fe

ct
s

di
sc

ov
er

ed

Usage/test time

Defects discovered over life of version

Increase is
caused by
blocking
defects

Peak is reached
when blocking

defects are either
fixed or avoidable

Stability cannot
be reached if

defects are not
fixedValue added: A stable defect

discovery profile won’t happen
if the defects aren’t removed

14

Estimated residual
defects and potential
for pileup

• Releases are too far
apart initially and too
close together in last 3
releases

• SRE predictions
allowed for leveling of
features before the
code is even written 0

5

10

15

20

25

Total faults predicted (nominal case)
from releases 1 to 5 predicted for each

month

Value added: An early sprint or
release might be stable; but at
planned cadence eventually
future sprints or releases
won’t be

Presenter Notes
Presentation Notes
In the above example, 5 releases were predicted and then superimposed. You can see that the last 3 releases are too close together because the defects from the previous release(s) are predicted to build up.

15

Severity/effect of
unresolved defects

15

It’s possible to have a decreasing
defect trend and defects that aren’t
piling up but still have unreliable
software because there are open
defects that the user can’t experience

1. A single defect causes multiple failures
2. The same failure happens at every

installed site at the same time
3. A collection of defects “with

workarounds” collectively cause the
user to have unacceptable downtime

4. One “reset” could happen so often
that the system is unusable

5. The worst software failures often
happen when the software is
executing

6. Systematic software failures need to
be counted as a failure every time
they occur until the underlying failure
mode is proven to be removed or
mitigated

Value added: Software isn’t like hardware.
Software can have the following failures that
typically don’t happen with hardware.

16

Defect density
benchmarking
statistics

 Tables like this are
derived from actual
field data [1][2]

 Organizations with
lowest deployed
defect density were
also late less often
and by a smaller
amount

 SRE for any given
project can be
benchmarked by
answering a simple
survey

Cluster Outcome

Defect metrics
Late deliveries (as
per SW estimates)

Average
defects
per 1000
source
lines of
code

% defects
removed
prior to
release Fault rate

Prob
(late)

How much
project is
late by as
% of
schedule

3% World Class .0269
>75%

Steadily
decreasing

40 12
10% Successful .0644 20 25

25%
Above

average .111

40-75%

Recently
peaked or

recently
decreasing

17 25
50% Average .239 34 37

75%
Below

average .647 85 125
90% Impaired 1.119

<40%
Increasing
or peaking

67 67
97% Distressed 2.402 83 75

16

Value added: The defect
profile can be predicted before
testing even starts. Sometimes
one bad development practice
can derail the program. You
don’t want to wait until testing
or operation to find that out.

Presenter Notes
Presentation Notes
The benchmarking shows 7 distinct clusters of data. The “3 percentile” cluster has defect density that’s smaller than 97% of those in the database, therefore earning the description “world class”. The average defect density of this cluster is .0269 defects per KSLOC of normalized code. The smallest defect density in this cluster and therefore in the database is .00555. The largest defect density for the world class cluster is .0519. The standard deviation of the defect density for the world class group is .0182. For those projects that were in the successful cluster they were late 40% of the time. However, they were only late by an average of 12%. At the other end of the data is the 97% group which had defect density that was larger than 97% of the database. The projects in this cluster were seriously distressed. The average defect density is 2.402. The largest defect density in this cluster and therefore the database is 3.4. The standard deviation for this cluster was .791. The distressed cluster was late 85% of the time. What’s worse is that when they were late it was a margin of an average of 75%. The other 5 clusters fall between these two extremes.

Factors that have
been
mathematically
proven to be related
to software
reliability [1][2]

USAF Rome Laboratories
developed first prediction
model in 1987[2]. It was
based on these factors.

A few more have been
developed since then.

Facts don’t lie. All
predictive models agree
that how the software is
developed is a good
predictor for its ultimate
reliability.

Static analysis
tools measure

these

SEI CMMi and
ASPICE assess

this

These are
often

overlooked

Type of
factor

Number /% of
characteristics
in this category

Examples of characteristics in this
category

Product 50 – (10%) Size, complexity, whether the
design is object oriented,
whether the requirements are
consistent, code that is old
and fragile, etc.

Product
risks

12 – (2%) Risks imposed by end users,
government regulations,
customers, product maturity,
etc.

People 38 – (7%) Turnover, geographical
location, amount of noise in
work area, number of years of
experience in the applicable
industry, number of software
people, ratio of software
developers to testers, etc.

Process 121 – (23%) Procedures, compliance, exit
criteria, standards, etc.

Technique 302 – (58%) The specific methods,
approaches and tools that are
used to develop the software.
Example: Using a SFMEA to
help identify the exceptions
that should be designed and
coded.

These are
often

overlooked
17

Techniques that have been proven to effect software reliability that
are often overlooked

Category Examples
Decomposition • Code a little, test a little philosophy.

• Release development/test time < 18 months long and preferably <12
months.

• Each developer has a schedule that is granular to day or week.
Visualization with
pictures and tables

A picture is worth 1000 words. Specifications with diagrams/pictures/tables
are associated with fewer defects than text.

Requirements focus Developing requirements that aren’t missing crucially important details

Testing focus/rigor Explicitly testing the requirements, design, stresses, lines of code,
operational profile

Unit testing focus Unit testing by every software engineer is mandatary and as per a defined
template. Branch coverage tools and metrics.

Defect reduction
techniques

Software fault trees, software FMEA, etc.

Design focus Designing states, sequences, timing, logic, algorithms, error handling before
coding

Regular monitoring
of the software
engineers

Monitoring software progress daily or weekly, identifying risks early, etc.

Planning ahead Planning the scope, personnel, equipment, risks before they become
problematic, planning the timing of the tasks

18

Coverage metrics

• These metrics put the defect profile observed in testing into
perspective

• Ex: If only half of the requirements are covered or half of the
code has been executed in testing then the reliability growth
progress is optimistic by at least 50%. (i.e. total defects are
at least twice what have been observed so far)

19

Software
Metrics

Definition

Requirements
Traceability

Degree to which the
requirements have been met by
the architecture, code and test
cases

Structural
coverage

Degree to which the lines of
code, paths, and data have
been tested

Value added: The estimated
fault trend and remaining
defects are only as accurate as
the amount of code and
requirements that have been
covered.

Qualitative
• An organization can have excellent

quantitative measures but still
have unknown failures that cause
serious problems for end users

• This is because every
development activity is designed
for success.

• Engineering calls these failures
“edge” cases

• But really these failure modes
were detectable all along. They
just chose not to look for them or
design to them.

20

Qualitative

Level of rigor in testing including
• Test Like You Operate
• Fault injection testing
• Peak loading and endurance

testing
• Boundary and zero value testing
• Code coverage
• Go-No go testing
• Requirements coverage

Failure mode identification against
the “Common Defect
Enumeration” or known set of
software failure modes and/or
fault tree analysis

Defect root cause analysis

Value added: Reliable software is
achievable only when software is
designed to avoid failure.

Develop a
reliability test
suite to
maximize the
level of rigor
Contrary to
popular belief
testing only the
requirements is
rarely
sufficient.

21

Type of test Inputs Description
Black box testing
Operational
profile testing

The Operational Profile
(OP)

Also known as “Test Like You
Operate”

Requirements
based testing

The software
requirements

Exercises the SUT to provide
assurance that it satisfies its
requirements as specified.

Model based
testing

Test models may be
derived from
requirements and design
documentation.

Exercises state transitions, fault
states, dead states, prohibited
states

Stress case
testing

Expected longest
mission time and max
concurrent users

Peak loading, endurance, zero
value testing, boundary values,
go no-go testing

Timing and
performance

Timing and scheduling
diagrams, performance
requirements, the
effects of software on
the system design

Exercises the SUT to evaluate
compliance with requirements
for real-time deadlines, resource
utilization.

Failure modes
– See next
slide

Software FMEA, defect
root cause analysis, fault
trees

Exercises the conditions that are
associated with the identified
failure modes. This is the only
test that verifies that software
works properly in a degraded
environment.

Value added:
These tests often
identify defects
that are the most
severe and most
expensive to fix
once deployed

Analyze failure
modes and effects

• Problem: Engineers will
often consider failure
modes that are so obvious
that they are guaranteed
to be found in testing – or
they will consider failure
modes that aren’t fixable in
the software.

• There are over 400 failure
mode/root causes that are
at least relevant to all
software systems.

• The failure modes are
tagged to actual failures
from mission and safety
critical systems since 1962

22

Software
failure mode

Description

Faulty state
management

Inadvertent state transitions, dead states,
state transitions are incorrect, etc.

Faulty
sequencing

Operations execute in the wrong order

Faulty timing Operations start too early or too late or take
too long. The right event happens in the right
order but at the wrong time

Faulty data The data is the wrong units of measure,
scale, resolution, type, size, stale, corrupt,
missing.

Faulty
functionality

The system does the wrong thing or does the
right thing incorrectly

Faulty error
detection

The software fails to detect faults in the
hardware, communication, computations,
power, external components or devices,
computations, etc.

Faulty
processing

Software accuracy or memory degrades over
mission, software can’t handle peak loading
or maximum users

Value added: Virtually 100% [3] of the software failure modes that have cause problems in
operation are due to the above categories which are often overlooked.

History repeats
itself.

Root causes are
predictable but
only if someone
thinks about
them.

• Faulty error handling – Apollo 11 lunar landing, ARIANE5,
Quantas flight 72, Solar Heliospheric Observatory
spacecraft, Denver Airport, NASA Spirit Rover (too many
files on drive not detected)

• Faulty data definition - Ariane5 explosion 16/64 bit
mismatch, Mars Climate Orbiter Metric/English mismatch,
Mars Global Surveyor, 1985 SDIO mismatch, TITANIV wrong
constant defined

• Fault logic– AT&T Mid Atlantic outage in 1991
• Timing - SCUD missile attack Patriot missile system, 2003

Northeast blackout
• Race condition - Therac 25

• Peak load conditions - Affordable Health Care site launch,
Iowa Primary

• Faulty usability
• Too easy for humans to make mistakes – AFATDS

friendly fire, PANAMA city over-radiation
• Insufficient positive feedback of safety and mission

critical commands –

The above illustrates that history keeps repeating itself
because people assume root causes from other
industries/applications are somehow not applicable.

Lesson to be learned – the root causes are applicable to
any industry/product. It’s the hazards/effects that result
from the root causes that are unique.

23

Software failure modes effects analysis are highly effective
but only if the below 17 mistakes are avoided

Organizational mistakes
• None of the software FMEA analysts

have a background in software

• The analysis is not constructed by a cross
functional team

• Conducting the SFMEA too late (most of
these failure modes are too expensive to
fix once the code is written)

• Conducting the SFMEA without the
proper software deliverables such as the
SRS, SDD, IRS, etc.

• Failing to track the failure modes and/or
make any corrective actions to the
requirements, design, code, use case,
users manual as a result of the SFMEA

• Failing to tailor the software FMEA to the
highest risk areas and most relevant
failure modes

Faulty Assumptions
• Assumption that all

failures originate in a
single line of code or
specification

• Assumption that software
works

• Assumption that software
specifications are correct
and complete

• Assumption that all failure
modes will be found and
fixed in testing

• Assumption that all failure
modes are impossible or
negligible in severity

FMEA Execution mistakes
• Focusing on total failure of the software

- failing to consider small things that
lead to big things going wrong

• Black box versus functional approach –
analyze what the software does and not
what it is

• Ignoring the 6 dimensions that lead to
software failures - the system, the users
who use the system, the battlefield
environment, and the mission

• Conducting the SFMEA at too high
(system requirements) or too low (lines
of code) a level or architecture

• Mixing functional failure modes with
process failure modes (i.e. fault timing
means the software design not the
software schedule)

• Incorrectly assigning a failure rate or
likelihood

Value added: The IEEE 1633 explains out how to apply the FMEA so that the 17
common mistakes are minimized. The recommended practice can be applied to any
industry FMEA standard for framework.

Presenter Notes
Presentation Notes
Audio: Even when the SFTAs are executed properly there are still some limitations…Expertise of the analysis is very important as mentioned before. You do your best when wrong - next time you’ll think of it. Experience grows & we need to communicate so as to take advantage of others knowledge & experience. It is impossible to identify all faults and causes of faults (FTA will probably always be incomplete.)

FAULTY ASSUMPTION THAT ALL FAILURE MODES ORIGINATE IN A SINGLE LINE
OF CODE

25

Line of code #1
Line of code #2
Line of code #3
Line of code #4
Line of code #5
Line of code #6

…..

Line of code fails
to execute

Line of code
terminates

The analysts work through each line of
code one at a time and analyze against
statement each CDE one at a time.

This is ineffective because:
1. Very few failures are due to a single line of

code [3]
2. When a failure is due to a single line of code

it is usually due to mistakes like these
• Line of code executes the wrong

command (i.e. has a compilable typo)
• Line of code manipulates the wrong

data
• Line of code uses isn’t written properly

but still compiles
3. Lines of code typically don’t fail to execute
unless there is a defect in another line of code
4. If a line of code terminates execution it is
often because there is missing fault handling or
by faulty design

FAULTY ASSUMPTION THAT ALL FAILURE MODES ORIGINATE IN A SINGLE
SPECIFICATION

26

SRS #1
SRS #2
SRS #3
SRS #4
SRS #5
SRS #6

…..

CDE #1
CDE #2
CDE #3
CDE #4
CDE #5
CDE #6

…..

The analysts work through each SRS
statement one at a time and analyze
against statement each failure mode
one at a time.

This is ineffective because:
1. Majority of operational defects aren’t

caused by a single faulty statement [3]
2. Many of the common defect

enumerations don’t apply at the
statement level – they apply to a
collection of statements

3. Primary failure mode at an individual
specification is magic numbers (i.e.
timing or accuracy requirements.)

INCOSE requirements analyzers are effective at identifying requirements
statements that are ambiguous or untestable.

MANY FAILURES ARE DUE TO A COLLECTION OF SOFTWARE SPECIFICATIONS,
MISSING SPECIFICATIONS AND MULTIPLE LINES OF CODE

27

Analyze the collection of
software requirements against
the set of CDEs
1. Prune the CDEs to remove

things you don’t have in the
software

2. Analyze the specifications
and design as a whole
package against the relevant
CDEs

SRS #1
SRS #2
SRS #3
SRS #4
SRS #5
SRS #6

…..

CDE #1
CDE #2
CDE #3
CDE #4
CDE #5
CDE #6

…..

Value added: The Common Defect Enumeration lays out the failure modes
that have caused the most failures in operation. The CDE can be used in any
FMEA framework or industry standard.

Include software in a system fault tree
• A “software” fault tree should be part of an overall system fault tree to ensure

that interactions with hardware are considered

• The fault tree can feed the software FMEA
• The hazards are tagged to the top level effects in the SFMEA
• If the SFMEA is effective it will cover every hazard

• The software FMEA can feed the FTA
• It may/will identify hazards that weren’t considered in the FTA, PHA, FHA

28

Value added: A fault tree can jump start the software FMEA to ensure that the most likely
failure modes tagged to the most serious hazards are considered.

29

Software defect root cause analysis
• The defect RCA can be employed all by itself or prior to a software

FMEA
• Defect RCA ensures that fault injection testing, design reviews,

specification reviews, and code reviews, focus on the most relevant
root causes for the application under development

• Defect RCA has 3 viewpoints
• Defects by originating artifact

• Contrary to popular belief most defects found in operation are not
“coding” defects. They are specification and design defects that led to
coding defects.

• Defects by failure mode
• Faulty timing, sequencing, state management, error handling,

functionality, processing, logic, interfaces, etc.
• Defects by root cause

• See the Common Defect Enumeration [2]

29

Value added: Failure modes that have happened in the recent past are the most likely to
happen again. That’s because software engineers usually fix one instance of a defect but
don’t fix related systematic instances.

Software defect root cause analysis

The most common failure mode is directly related to the weakest link in the
development activity. Examples:

• If the software engineers fail to consider that software must detect failures in hardware there
will be more faulty error handling failure modes

• If the software engineers fail to do state diagraming prior to coding and the system is
stateful; state management defects are more likely

• If the software engineers fail to do timing design and timing is important for the application;
timing defects are more likely

30

0
1
2
3
4
5
6
7
8
9

D
ef

ec
ts

Failure mode

Defects by failure mode

Software defect root cause analysis

Defects are introduced because of either bad requirements, bad design,
bad coding practices or bad change control.

• Requirements defect – The “whats” are incorrect, ambiguous or incomplete.

• Design defect – The “whats” are correct but the “hows” are not. Logic, state,
timing, exception handling are all design related.

• Coding defect- The “whats” and “hows” are correct but the software engineer
did not implement one or more lines of code properly. 31

0
1
2
3
4
5
6
7
8
9

Detailed design Requirements Maintenance
change

External change Coding Installation
package

Usability

N
um

be
r o

f d
ef

ec
ts

Activity/Artifact introducing defect

Defects by originating artifact or activity

Software defect root cause analysis

Each of the failure modes has multiple root causes as per the Common
Defect Enumeration [2]

32

0
1
2
3
4
5
6
7
8

D
ef

ec
ts

Root cause

Defects by root cause

Summary

33

IEEE 1633 2016 puts forth
recommended practices

to apply qualitative
software failure modes

analyses and qualitative
models

Improve product and ensure
software or firmware

delivered with required
reliability

IEEE 1633 2016
includes improved

guidance over 2008
edition

Offers increased value to this
audience

• Reliability engineers
• Software quality engineers
• Software and engineering

managers
• Acquisitions
• Regulatory

IEEE 1633 2023 will
make following
improvements

Incorporates

• Common defect
enumeration

• Tailoring for DevSecOps
• Updated models
• Refined guidance

34

References

[1] The Cold Hard Truth About Reliable Software, Version 6i, AM Neufelder, 2019.

[2] Rome Laboratory TR-92-52, “Software Reliability Measurement and Test Integration Techniques”, J
Mccall, W Randell, J Dunham, L. Lauterback, 1992.

[3] The Common Defect Enumeration, AM Neufelder, Copyright Mission Ready Software, 2021.
https://www.dau.edu/cop/rm-engineering/_layouts/15/WopiFrame.aspx?sourcedoc=/cop/rm-
engineering/DAU%20Sponsored%20Documents/Reliable%20Software%20SOW%20Appendix%20B%20-
%20CDE.xlsx&action=default

[4] Effective Application of Software Failure Modes Effects Analysis, AM Neufelder, published by
Quanterion Solutions, Inc., 2014.

34

	Slide Number 1
	IEEE 1633 Working Group members
	Introduction and Motivation��Reliable software engineering…
	Introduction and Motivation��Reliable software engineering…
	Solutions provided by IEEE 1633��Actionable step by step procedures for assessing reliable software��During any phase of software or firmware development ��With any software lifecycle model for any industry or application type.�
	Slide Number 6
	Current status of IEEE 1633
	Quantitative
	Estimated portion of system failures due to software
	Rate of defect discovery in testing
	Lessons learned from a real software intensive program in which defect discovery rate was not tracked
	Lessons learned from a real software intensive program in which defect discovery rate was tracked
	Fix rate versus open rate
	Estimated residual defects and potential for pileup
	Severity/effect of unresolved defects
	Defect density benchmarking statistics
	Factors that have been mathematically proven to be related to software reliability [1][2]
	�Techniques that have been proven to effect software reliability that are often overlooked �
	Coverage metrics�
	Qualitative
	Develop a reliability test suite to maximize the level of rigor
	Analyze failure modes and effects
	History repeats itself. ��Root causes are predictable but only if someone thinks about them.
	Software failure modes effects analysis are highly effective but only if the below 17 mistakes are avoided
	Faulty Assumption that all failure modes originate in a single Line of code
	Faulty Assumption that all failure modes originate in a single specification
	Many failures are due to a collection of software specifications, missing specifications and multiple lines of code
	Include software in a system fault tree
	Software defect root cause analysis
	Software defect root cause analysis
	Software defect root cause analysis
	Software defect root cause analysis
	Summary
	References

