
HTTP://WWW.MISSIONREADYSOFTWARE.COM
SALES@MISSIONREADYSOFTWARE.COM

321-514-4659

Predicting software reliability in an CI/CD environment

http://www.missionreadysoftware.com/
mailto:sales@

About Ann Marie Neufelder
• Authored the industry guidance on software FMEA - “Effective Application of

Software Failure Modes Effects Analysis", published for CSIAC, 2014.

• Chairperson of IEEE 1633 Recommended Practices for Software Reliability
Working Group (2016 edition) –See video for more information:
https://www.youtube.com/watch?v=vmW2EM5KkMo&t=18s

• IEEE Lifetime Achievement Award, 2017, Reliability Society.

• 39 years of software engineering and software reliability experience

• Developed electronic warfare systems prior to starting Mission Ready
Software

• Managed small and large software development and test teams throughout
career and has applied virtually every development practice over 39 years

• Authored NASA’s Software FMEA and software FTA training webinar

• Authored Intel’s process for evaluating vendors with regards to software

• Co-authored USAF Rome Laboratory “System and Software Reliability
Assurance Notebook", with Boeing Corp.

• Authored “Ensuring Software Reliability”, Marcel-Dekker, 1993.

• Benchmarked 200+ software intensive systems for reliability, on time delivery
and customer satisfaction. See video for more information.
https://www.youtube.com/watch?v=HApDHxtG_Mk&t=1s

• Has analyzed almost 1 million failures due to software and categorized by
failure mode and root cause. See video for more information.
https://www.youtube.com/watch?v=XdrzT8b8qXs&t=20s

• U.S. Patent 5,374,731 for predictive model

• 1983 Graduate of Georgia Tech 2

https://www.youtube.com/watch?v=vmW2EM5KkMo&t=18s
https://www.youtube.com/watch?v=HApDHxtG_Mk&t=1s
https://www.youtube.com/watch?v=XdrzT8b8qXs&t=20s

About Mission Ready Software
• In business since 1991

• Customers include DoD, medical devices, energy, space, commercial aircraft,
semiconductor, vehicles, major electronics

• Worlds largest software reliability benchmarking data
• 679 factors measured at 200+ engineering organizations

• Worlds largest database of software failure events analyzed for root cause
• The Department of Defense recently published our “Common Defect Enumeration”

on DAU R&M CoP website

• Frestimate software developed in 1993 based on regression models for predicting
software defects. Retired in 2021 and replaced by Requs AI Predict.

• Requs AI Predict is first machine learning tool to predict software defects before the
code is written

• Requs AI Predict SFMEA is the first machine learning tool to auto generate a software
FMEA

3

Agenda

• Software defects, failures, rework and probability of on time
delivery can be predicted before the code is even written

• Practical applications for predictions

• How to use the models in DevSecOps

Mission Ready Software, 2022 4

Models that predict defects, failures,
rework, on time delivery

• If you have enough data - you can predict anything
• 30 years ago weather forecasts for any given day had only 50% accuracy
• Now you can accurately predict when to schedule your tee time

• A good predictive model has the following
• As much data as possible from as many engineering companies as possible

• How many defects were actually deployed and how long did it take for customer to discover them?
• How did the organization develop the software?
• What are the product characteristics? Inherent industry risks?
• What was the experience level of the software organization?
• What was the level of rigor of the testing?
• Was the design and specifications clear and unambiguous?

• The more parameters the model has the more accurate it will be.
• No one gets approved for a home mortgage based on only 1 factor.
• You don’t predict defects based on only 1 factor either.

Mission Ready Software, 2022 5

History of predictive models

Mission Ready Software, 2022
6

Model # Data
sets

Inputs

Year last
updated

Comments

USAF Rome
Laboratory TR-92-52

53 Up to
212

1992 • Very outdated. 31 years in software engineering is
akin to a millennium.

• Difficult to use for non-aircraft systems

RIAC 217 Keene
model

14 1 1998 • Model violated basic rules of statistical modeling
• Model assumed that only 1 parameter is needed to

predict defects
• Not enough parameters or data sets

Mission Ready
Software –
Requs AI Predict
(formerly Frestimate)

> 150 679 Continuously
updated since
1993

• Mission Ready Software was involved with USAF
prediction model development

• Several factors identified by USAF were
incorporated into model

• Model works for any software intensive
engineering system

• Continually verified against new data sets
• Continually updated for new development

processes
• 40% of data is from defense, aerospace and space
• 30% is from medical devices
• 30% is from transportation, energy, major

equipment
• All data is from mission/safety critical systems

History of predictive models – one bad apple
can spoil the whole bunch

Mission Ready Software, 2022
7

• RIAC 217 Keene model was developed by personnel who don’t have real software engineering
experience

• The model had several technical statistical errors and faulty assumptions
• Assumed that software reliability would grow for 4 years
• Neglected to consider that no one on earth waits 4 years for a new feature release
• Any time new features are added to code, the defect profile resets
• Many faulty assumptions about the CMMi level and defects

• The model was very popular with reliability engineers because it always yielded MTBF
predictions of virtually infinite because of the 4 years of growth

• The customers know the model is grossly incorrect and hence were cold to prediction models

• However, the IEEE 1633 Recommended Practices for Software Reliability, 2016 improved on that
perception by listing the models to NOT use and why the models should not be used

• Mission Ready Software developed a model based on facts and not opinions

Mission Ready Software Predictions

Mission Ready Software, 2022
8

• We have > 9 times the data that USAF benchmarked

• We have > 7300 times the data of the Keene Cole Model

• We have the only machine learning model for predicting defects in software
before the code is even written

• We keep the model up to date every year for
• Emerging development practices such as DevSecOps, AI, ML, etc.
• More data sets from industry
• More application types (ie driverless vehicles, hand held medical devices, etc.)

Copyright Mission Ready Software 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder. 9

Factors that have been proven to be related to software reliability

 To date Mission Ready Software has correlated 679 factors to actual escaped
defect density
 156 factors were not employed by enough organizations to be usable in a predictive

model. The remaining 523 factors are summarized as shown below.
 Notice that 67% of the factors aren’t assessed via other popular tools or assessmentCharacteristic

category
Number /% of
characteristics
in this category

Examples of characteristics in this category

Product 50 – (10%) Size, complexity, whether the design is object
oriented, whether the requirements are
consistent, code that is old and fragile, etc.

Product risks 12 – (2%) Risks imposed by end users, government
regulations, customers, product maturity, etc.

People 38 – (7%) Turnover, geographical location, amount of noise
in work area, number of years of experience in the
applicable industry, number of software people,
ratio of software developers to testers, etc.

Process 121 – (23%) Procedures, compliance, exit criteria, standards,
etc.

Technique 302 – (58%) The specific methods, approaches and tools that
are used to develop the software. Example: Using
a SFMEA to help identify the exceptions that
should be designed and coded.

Static analysis
tools measure

these

SEI CMMi
assesses this

These are
often

overlooked

These are
often

overlooked

Comparison of factors that have been
quantitatively correlated to reduced defects

Mission Ready Software, 2022
10

CMMi
Assessment

Rome
Laboratory
Model

Requs AI
Predict

End user domain experience of software engineers No Yes Yes

Level of rigor of testing, HWIL, fault injection testing, etc. No Yes Yes

Visual representations such as diagrams, tables, etc. No Yes Yes

Shorter release cycles No No Yes

Processes to control source code, changes and versions Yes No Yes

Written specifications, design, test procedures Yes Yes Yes

Regular reviews with software engineers, schedules granular to day or
week

No No Yes

Quality processes Yes Yes Yes

Coding practices No Yes Yes

Unit testing level of rigor No Partial Yes

Location of software engineers with respect to system hardware and
other engineers and each other; remote working, etc.

No No Yes

Use of advanced life cycle models (CD/CI), stakeholder involvement No No Yes

Object oriented methods No No Yes

Avoidance of too many inherent technical risks in one release No No Yes

Ability to accurately schedule the work No No Yes

Copyright Mission Ready Software 2020 This material may not be reprinted in part or in whole without written permission from Ann Marie Neufelder.
11

Mission Ready Software
Statistics for various SRE
capabilities

11

• Actual defect density from
150+ software/firmware
projects in Mission Ready
Software database
benchmarked into one of
these 7 clusters

• Organizations with lowest
deployed defect density
were also late less often
and by a smaller amount

• SRE for any given project
can be predicted by
answering a simple survey

• Average defects/1000 SLOC
calculated by adding all
defects over life of version
(2-8 years) and dividing by
the actual size of that
version

Cluster Outcome

Defect metrics
Late deliveries (as
per SW estimates)

Average
defects
per 1000
source
lines of
code

% defects
removed
prior to
release Fault rate

Prob
(late)

How much
project is
late by as %
of schedule

3% World Class .0269
>75%

Steadily
decreasing

40 12
10% Successful .0644 20 25

25%
Above

average .111

40-75%

Recently
peaked or

recently
decreasing

17 25
50% Average .239 34 37

75%
Below

average .647 85 125
90% Impaired 1.119

<40%
Increasing
or peaking

67 67
97% Distressed 2.402 83 75

Mission Ready Software Predictions -
Accuracy

Mission Ready Software, 2022
12

• We continually update the model by validating it against new data sets

• We also validate the model results against the “Subject Matter Expert (SME)” guesses
• Our models are within 1 order of magnitude when used properly
• SME Guesses are almost always 5+ orders of magnitude

• If the model predicts the cluster correctly - the relative error is negligible

• If the model predicts one cluster in either direction - the error is typically < 1 OOM

• If the model predicts Low, Medium or High accurately - the error is typically at 1 OOM

• The model is least accurate for software organizations that pretend to be world class but really are
not
• We are working on finding patterns to identify these as well

• The model is very accurate at identifying distressed programs

PRACTICAL
APPLICATIONS OF

THE
PREDICTIONS

13

Planning resources to
test, fix defects and
provide field support

Predicting overall
success or failure of
release

Predicting defect
pileup before it kills
the schedule

Sensitivity analysis

PREDICTING
DEFECT
PILEUP

BEFORE IT
KILLS THE

SCHEDULE

Defect pileup creeps
up on software
engineering

Defect pileup
eventually will cause
the entire schedule
to slip because
people are
redirected to fixing
defects instead of
working on future
features

The models can see
it coming - well
before it causes
schedule delay

14

Predictions can be used to plan release sizes/frequency to
avoid defect pileup
 Software is never deployed with just one big software release even with

waterfall model

 Superimpose predicted defect profile from every release onto one timeline

Are there obvious signs of defect pileup?

0

2

4

6

8

10

12

Defects from release #1

In this example, defects
are piling up from
release to release

Solutions to pileup –
1) Split features up into
more smaller releases

2) Keep the same
spacing but less new
code in each release

3) Keep the same code
size but greater

spacing.
Red – Predicted to be found by customer
Grey – Predicted to be found by developer

0

2

4

6

8

10

12

Defects from release #2

PLANNING
RESOURCES

Number of
test personnel

Corrective
action

Field support

16

Resource planning

Mission Ready Software, 2022
17

• Model predicts defects to be found in test and in operation

• Staffing effort = typical corrective action time & defects

• Model predicts when the defects will be discovered so that resources can be
scheduled
• Most defects are found in the first year of operation

• Model predicts test hours needed to find the defects
Hours after
delivery

Total defects predicted to be
found this increment

700 14.9
1400 14.1
2100 13.3
2800 12.6
3500 11.9
4200 14.0
4900 13.2
5600 12.4
6300 11.7
7000 11.1
7700 10.5
8400 12.6

Week of
testing

Total
defects

predicted
this week

Total critical
defects
predicted for
this week

Average #
people needed
to address all
defects

Average #
people needed
to address
critical defects

Week 1 12.909 1.033 5.2 0.4
Week 2 11.800 0.944 4.7 0.4
Week 3 10.787 0.863 4.3 0.3
Week 4 9.860 0.789 3.9 0.3
Week 5 9.013 0.721 3.6 0.3
Week 6 8.239 0.659 3.3 0.3

PREDICTING
OVERALL
SUCCESS

Successful,
Mediocre,
Distressed

Defect Removal
Efficiency –
Percentage of
total inherent
defects that
have been
observed so far
in test or usage

18

About 39% of
total inherent

defects
observed

Defect discovery profiles
• Since the 1970s it has been known that for any release (waterfall or agile) that defects found per

usage hours will increase, peak, decrease and trail off
• Increase is due to blocking defects and the fact that every feature cannot be tested at the same time
• Peak happens when the blocking defects are fixed or avoided and there’s no more blocking defects
• If the defects are fixed or avoided then defect discovery rate will start to decline during testing
• The tail of the Rayleigh curve can last years. This is where a few defects due to unanticipated but

valid conditions are discovered.

0

2

4

6

8

10

12

N
on

 C
um

ul
at

iv
e

de
fe

ct
s

di
sc

ov
er

ed

Months of usage over life of software release

Defect discovery profile over life of versionBlocking
defects &
test cases
not yet
covering
all features

Defects are fixed or
avoided and no new
blocking defects

Defects are
discovered from
unanticipated but
valid scenarios .

The last 25% of the
inherent defects

No more
blocking
defects

Four things that vary from SW project to project
1. Height of the Rayleigh curve – more software features means more defects

2. Width of the Rayleigh curve – depends on how many different users operate the software (From
1 year for mass deployed software to 4+ years for non mass produced)

3. When will the software be deployed with respect to this profile. Failed? Mediocre? Successful?

4. The spacing between the releases. With incremental/agile development the spacing is much
closer and the size of each curve is much smaller than with waterfall development.

0

2

4

6

8

10

12

N
on

 C
um

ul
at

iv
e

de
fe

ct
s

di
sc

ov
er

ed

Months of usage over life of software release

Defects predicted over life of versionFailed projects
deploy prior to

peak when < 39%
of defects are

removed

Mediocre projects
deploy between
40% and 75% of
area under curve

Successful
projects

deploy at >
75% of the
area under
this curve

Failed Mediocre Successful

SENSITIVITY
ANALYSIS

Models can be used to
identify the fewest
lowest cost changes in
development practices
with biggest return on
investment (ROI)

Models can also be
used to identify the
development factors
THAT DON’T REDUCE
DEFECTS AS MUCH AS
PEOPLE THINK

Every hour you spend
on practices that aren’t
effective is an hour not
spent on practices that
are!

21

Sensitivity analysis
22

Once the prediction is established, alternative scenarios are identified by Requs AI Predict

The “gaps” are the development practices that you aren’t doing but are most likely to reduce defects

• Relative culture change required to implement the practice or method
• Relative out of pocket cost required to implement the practice or method (i.e. hiring people, buying tools, etc.)
• Relative number of release cycles until you see visible improvement
• Prerequisites needed to attempt the development practice
• All development factors are listed in ranked order of impact on defect reduction

The “excess” factors are those practices that you are doing that have limited ROI

• Example: An organization has 100% affirmative responses for software process but few affirmative responses
for software testing. The worst possible scenario is that an organization invests a lot of money and time into a

development practice that has only marginal effect on reducing defects

Our tool helps you to avoid popular silver bullets

RELIABLE
SOFTWARE AND

CONTINUOUS
INTEGRATION/
CONTINUOUS

DEVELOPMENT

Not every risk
is mitigated
by CI/CD

23

Waterfall development versus CI/CD
Waterfall development

• Long cycle times and “big
blobs” typically result in late
and unreliable SW

Continuous Integration/Continuous
Deployment (CI/CI)

24

Implement

Deploy

Test

Concept
Requirements

Design

 Smaller cycle times reduce
some but not all risks

Risk of late,
unreliable SW

Plan
Design

Develop
Test

Deploy
Review
Launch

Risk of late,
unreliable SW

Plan
Design

Develop
Test

Deploy
Review
Launch

Plan
Design

Develop
Test

Deploy
Review
Launch

Risks that
aren’t
necessarily
mitigated
by CI/CD

25

Low test coverage or level of rigor in testing

Not enough defects are fixed in each sprint - so they pile up to the next sprint

Software engineers (SE) don’t have end user/industry knowledge

SEs misunderstand the user stories (largely due to lack of end user experience)

SEs skip design or aren’t good at it

SEs don’t test software in real world environment

SEs don’t do consistent unit testing against design or specifications

SEs don’t consider all failure modes or scenarios

SEs aren’t good at estimating how much work they can do in a sprint (which leads to
late deliveries which is never good for reliability)

Despite the fact that CD/CI was invented for this purpose- SEs don’t take advantage
of data from each sprint so as to plan/replan the scope and effort for future sprints

SEs sometimes tag “Agile” to anything they conveniently do or do not want to do

SEs typically want development tasks to be “Agile” but reliability tasks to be
“Waterfall”

Failure mode analysis,
reliability predictions

Ideal versus real world relationship between reliability
and software engineering

Waterfall As per IEEE 1633

• Reliable SW tasks are supposed to be in
line with development

What really happens

26

Code & Unit test

Deploy

System test

Concept

Requirements
Design

Fault injection test,
reliability

evaluations

Plan reliable SW tasks

Code & Unit test

Deploy

System test

Concept

Requirements
Design

 Reliable SW tasks are done after
project is already in trouble and no
time to fix anything. Everyone is blind
sided by poor reliability.

Reliability
Engineering (RAM)

not involved in
development or test

No reliable SW planning

Last minute
FMEA, reliability

estimations

Initial failure modes analysis
Initial reliable predictions, fault
injection tests

Ideal versus real world relationship between
reliability and software engineering

CI/CD as per IEEE 1633

• Reliable SW tasks are supposed
to be integrated with CD/CI

What really happens

27

Plan reliable SW tasks

Last minute
FMEA, reliability

estimations

 Reliable SW tasks are done after project is
already in trouble and no time to fix
anything. Everyone is blind sided by poor
reliability.

Plan
Design

Develop
Test

Deploy
Review Launch

Updated failure modes,
reliable predictions, fault
injection tests

Updated failure modes,
reliable predictions, fault
injection tests

Reliability
Engineering
(RAM) not
involved in

development or
test

Plan
Design

Develop
Test

Deploy
Review Launch

Plan
Design

Develop
Test

Deploy
Review Launch

Plan
Design

Develop
Test

Deploy
Review Launch

Plan
Design

Develop
Test

Deploy
Review Launch

Plan
Design

Develop
Test

Deploy
Review Launch

No reliable SW planning

Root causes
for late RAM
involvement

28

• Justified reasons
• RAM engineers may neglect to read the software

specifications, user manuals, test plans or procedures,
etc., to familiarize themselves with the SW

• RAM engineers try to apply HW reliability concepts that
don’t work for SW

• RAM engineers don’t understand the failure modes or
how to identify them

• Unjustified reasons
• SE doesn’t really want to fix defects, test fault injection

or know how reliable the software is
• SE thinks/says that IEEE 1633 doesn’t apply to CD/CI

(which is not true)

Software engineering (SE) doesn’t want
RAM involved

• Justified reasons
• RAM engineers are often excluded from scrum teams

• Unjustified reasons
• RAM engineers grossly underestimate the amount of SW

in the system
• RAM engineers assume that the defects can be easily

fixed

RAM engineers don’t want early involvement

BACKUP
The Agile
Manifesto

Common CI/CD
Myths

29

The Agile
Manifesto

Written in 2001 by:
Kent Beck
Mike Beedle
Arie van Bennekum
Alistair Cockburn
Ward Cunningham
Martin Fowler
James Grenning
Jim Highsmith
Andrew Hunt
Ron Jeffries
Jon Kern
Brian Marick
Robert C. Martin
Steve Mellor
Ken Schwaber
Jeff Sutherland
Dave Thomas

To address the
many problems
with Waterfall
software
development

https://agilemanifesto.org/

• Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

• Welcome changing requirements, even late in development.
Agile processes harness change for the customer's competitive
advantage.

• Deliver working software frequently, from a couple of weeks to
a couple of months, with a preference to the shorter timescale.

• Business people and developers must work together daily
throughout the project.

• Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the
job done.

• The most efficient and effective method of conveying
information to and within a development team is face-to-face
conversation.

• Working software is the primary measure of progress.
• Agile processes promote sustainable development. The

sponsors, developers, and users should be able to maintain a
constant pace indefinitely.

• Continuous attention to technical excellence and good design
enhances agility.

• Simplicity--the art of maximizing the amount of work not done-
-is essential.

• The best architectures, requirements, and designs emerge from
self-organizing teams.

• At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

30

Since 2001 there have been many
adaptions that have muddied the
original vision for Agile development

•“Unfortunately, once a movement becomes popular, the
name of that movement gets blurred through
misunderstanding and usurpation. Products and
methods having nothing to do with the actual
movement will borrow the name to cash in on the
name’s popularity and significance. And so it has been
with Agile.”

• Robert C Martin, “Clean Agile”.
• Robert is one of the original members of the Agile Manifesto

31

Myth #1 – We will have
more reliable on time
software because we
are using Agile.

Myth #2 – We don’t do
software sizing with
Agile. (Sizing is
estimating people or
effort or time to
develop the software)

Myth #1 - Statement from Robert C Martin:

“Agile is a framework that helps developers and
managers execute pragmatic project management.
However, management is not made automatic and
there is no guarantee that managers will make
appropriate decisions. Indeed it is entirely possible to
within the Agile framework and still completely
mismanage the project and drive it to failure.”

Myth #2- Statement from Robert C Martin with
regards to the analysis phase of development:

“Of course, some things are obvious. We should be
sizing the project and doing basic feasibility and
human resource projections. That is the least that
our business would be expecting of us. “

This ties to the Agile Manifesto “At regular
intervals, the team reflects on how to
become more effective, then tunes and
adjusts its behavior accordingly.”

32

Myth #3 –We
estimate story points
that are associated
with relative effort.
However, we don’t
try to estimate the
remaining effort in
terms of absolute
values. i.e. how many
months or people we
need to finish X
functionality.

It’s impossible to
estimate that!!!

Statement from Robert C Martin:

Mr. Martin illustrates:

• Two charts showing 1) actual velocity of story points over time and
2) Burn down chart of estimated story points remaining;

• The Iron Cross - which consists of Good, Fast, Cheap and Finished.
As per Mr. Martin you can only have 3 of the 4 attributes of the iron
cross.

“Each of the attributes has coefficients. A good manager
manages coefficients on these attributes rather than demanding
that all be 100%. It is this kind of management that Agile strives
to enable.

It is critical goal of Agile to get those two charts on the wall. One
of the driving motivations for Agile software development is to
provide the data that managers need to decide how to set the
coefficients on the Iron Cross and drive the project to the best
possible outcome.”

“Iteration one begins with an estimate of how many user stories
will be completed…At the end of the iteration, some fraction of
the stories that we had planned to finish will be done. This gives
us our first measurement of how much can be completed in an
iteration. This is real data. If we assume that every iteration will
be similar, then we can use that data to adjust our original plan
and calculate a new end date for the project” 33

Myth #4 –We
can’t have fast
development and
have reliable
software.

Statement from Robert C Martin:

“Everyone knows that you can go much faster
by producing crap. So stop writing all those
tests, stop doing all those code reviews, stop
all that refactoring nonsense and just code….

I’m sure you know that I am going to tell you
that this is futile. Producing crap does not
make you go faster, it makes you go slower.
This is the lesson you learn after you’ve been a
programmer for 20 or 30 years. There is no
such thing as quick and dirty. Anything dirty is
slow.”

“The only way to go fast is to go well. “

34

Facts from Mission Ready Software 30 year benchmarking
study of almost 200 engineering companies proves that this
isn’t true.

The engineering companies
that develop reliable
software (shown in green)
were also on time more
often. When they were late
– the slip amount was much
less than the organizations
that cut corners.

Organizations that
deployed the software
when the fault rate was
increasing also very late by
a non-trivial amount. In
addition, their customers
considered the project to be
a failure.

35

Cluster

Outcome from
customer
perspective

Defect metrics
Late deliveries (as per

SW estimates)

Average
defect
density

% defects
removed
prior to
release Fault rate

Prob
(late)

How much
project is
late by as %
of schedule

3% World Class .0269
>75%

Steadily
decreasing

40 12
10% Successful .0644 20 25

25%
Above

average .111

40-75%

Recently
peaked or

recently
decreasing

17 25
50% Average .239 34 37

75%
Below

average .647 85 125
90% Impaired 1.119

<40%

Increasing
or peaking

67 67
97% Distressed 2.402 83 75

The majority of these organizations are using agile
development. Very few are still using Waterfall model.

Myth #5 – We don’t
need requirements or
tracing of the
requirements.

Myth #6 – We don’t
need to analyze
failure modes.

Myth #7 – We do
developer unit
testing only.

The Agile Manifesto:

“The best architectures, requirements, and designs emerge from self-
organizing teams.”

The manifesto makes no mention of neglecting the
requirements.

Statement from Robert C Martin:

“A specification is, by its very nature, a test.

For example: When the user enters a valid username and password,
and then clicks “login” the system will present the “Welcome” page.

This is obviously a specification. It is also obviously a test….This is the
practice of Acceptance tests”.

“Acceptance tests are a collaborative effort between business
analysts, QA and the developers. Business analysis specify the happy
paths… QA’s role is to write the unhappy paths. There are a lot more
of them then there are the former .

QA folks are hired for their ability o figure out how to break the
system. They are deeply technical people who can foresee all of the
strange and bizarre things that users are going to do to the system..
… And of course, the developers work with the QA and business
analysts to ensure that the tests make sense from a technical point of
view.”

Conclusion: You can’t develop the acceptance tests without
somehow keeping track of the user’s requirements. Clearly the
tests are from multiple points of view. The unhappy paths are
captured in the “Common Defect Enumeration”. 36

Common Defect Enumeration used for identifying the
unhappy paths as well as the failure modes effects
analysis

The Common Defect Enumeration (CDE) [2], developed by Ann Marie Neufelder, is
derived from 60 years of “all of the strange and bizarre things that users are going to
do to the system”. The categories include:
• Faulty state management
• Faulty error handling
• Faulty processing
• Faulty functionality
• Faulty data
• Faulty timing
• Faulty sequencing
• Faulty usability
• Faulty machine learning
• Faulty interfaces
The CDE will be published on the DAU R&M CoP website shortly.

37

User requirements tracing

•These industries are required to identify which
user requirements are covered
• Medical devices
• Vehicles
• Commercial aviation

•All of these industries are using Agile
development

38

Myth #8 We
don’t need to
do design
because we are
using Agile.

The Agile Manifesto:

“The best architectures, requirements, and
designs emerge from self-organizing teams.”
“Continuous attention to technical excellence
and good design enhances agility.”
Clearly the writers of the manifesto intended for
software engineers to do software design.

Robert C Martin mentions design regularly
throughout his book.

• As part of Agile – 24,25

• Test Drive Design – 121

• Simple design – page 125

• Design weight – 127

So clearly it is intended to be part of Agile.

39

Myth #9 – We
have to have 2
week
engineering
cycles.

• Our benchmarking study shows that all software
project that exceeds 18 months of development are
distressed.

• This confirms the Agile Manifesto “Deliver working
software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale”

• However, our data [1] shows that any project that
has cycle time <= 3 months was either average or
above average in on time delivery and reliability.

• We have the world’s largest benchmarking study[1]
and see no physical evidence that either on time
delivery or reliability is better with 2 week cycles.

• However, our data [1] clearly shows that when
software engineers have regular meetings with
subject matter experts either daily or weekly that
their software is more reliable than when they meet
less often.

• It is our conclusion that the daily/weekly meetings
are why the Agile Manifesto prefers the shorter
timescale.

40

Improvements to rectify last minute un-reliable software

41

Obstacle Improvement areas

SE think/say reliability
doesn’t apply to CD/CI

IEEE 1633 2016 provided clear guidance. The 2023 update will make
it excruciatingly obvious. Mission Ready Software provides training
on how to apply reliability in CD/CI.

SE doesn’t allow reliability
into sprint decision making,
failure mode identification
or fault injection testing

Requires a good SOW and clear company and industry standards.
Mission Ready Software has rewritten the SAE and IEEE and DoD
guidance for applying Reliable Software in CD/CI.

SE assumes CD/CI fixes all
risks

Risks can be predicted with reliable software prediction models such
as Requs AI Predict and failure mode analysis using our Common
Defect Enumerations.

RAM assumes software is
small part of system

IEEE 1633 has methods for predicting the portion of SW versus HW
failures. RAM engineers need to start using this guide. Mission
Ready Software provides training and templates for this prediction.

RAM assumes defects can
be fixed easily

IEEE 1633 will be updated to make it much clearer to RAM people
that reliability cannot start the last 30 days of the program. Our
training classes provide clear guidance.

RAM engineers try to apply
HW reliability concepts to
SW that don’t work

• IEEE 1633 has guidance but 2023 update will provide crystal clear
examples of effective versus ineffective software FMEAs, and
Common Defect Enumerations.

• Common Defect Enumerations have been published on DAU
R&M CoP website.

References

• [1] AM Neufelder, “The Cold Hard Truth About Software Reliability”,
Version 6i, 2019.

• https://agilemanifesto.org

• Robert C. Martin, “Clean Agile – Back To Basics”, Pearson
Publishing, 2020.

• [2] AM Neufelder, “The Common Defect Enumeration”, 2020.

42

https://agilemanifesto.org/

	Slide Number 1
	About Ann Marie Neufelder
	About Mission Ready Software
	Agenda
	Models that predict defects, failures, rework, on time delivery
	History of predictive models
	History of predictive models – one bad apple can spoil the whole bunch
	Mission Ready Software Predictions
	Factors that have been proven to be related to software reliability
	Comparison of factors that have been quantitatively correlated to reduced defects
	Mission Ready Software Statistics for various SRE capabilities
	Mission Ready Software Predictions - Accuracy
	Practical applications of the predictions
	Predicting defect pileup before it kills the schedule
	Predictions can be used to plan release sizes/frequency to avoid defect pileup
	Planning resources
	Resource planning
	Predicting overall success
	Defect discovery profiles
	Four things that vary from SW project to project
	Sensitivity analysis
	Sensitivity analysis
	Reliable software and Continuous Integration/�Continuous Development
	Waterfall development versus CI/CD
	Risks that aren’t necessarily mitigated by CI/CD
	Ideal versus real world relationship between reliability and software engineering
	Ideal versus real world relationship between reliability and software engineering
	Root causes for late RAM involvement
	Backup
	The Agile Manifesto��Written in 2001 by:�Kent Beck�Mike Beedle�Arie van Bennekum�Alistair Cockburn�Ward Cunningham�Martin Fowler�James Grenning�Jim Highsmith�Andrew Hunt�Ron Jeffries�Jon Kern�Brian Marick�Robert C. Martin�Steve Mellor�Ken Schwaber�Jeff Sutherland�Dave Thomas��To address the many problems with Waterfall software development��https://agilemanifesto.org/
	Since 2001 there have been many adaptions that have muddied the original vision for Agile development
	���Myth #1 – We will have more reliable on time software because we are using Agile.��Myth #2 – We don’t do software sizing with Agile. (Sizing is estimating people or effort or time to develop the software)����
	����Myth #3 –We estimate story points that are associated with relative effort. �However, we don’t try to estimate the remaining effort in terms of absolute values. i.e. how many months or people we need to finish X functionality.��It’s impossible to estimate that!!!���
	����Myth #4 –We can’t have fast development and have reliable software.��
	��Facts from Mission Ready Software 30 year benchmarking study of almost 200 engineering companies proves that this isn’t true.��
	����Myth #5 – We don’t need requirements or tracing of the requirements.��Myth #6 – We don’t need to analyze failure modes.��Myth #7 – We do developer unit testing only.����
	��Common Defect Enumeration used for identifying the unhappy paths as well as the failure modes effects analysis�
	User requirements tracing
	���Myth #8 We don’t need to do design because we are using Agile.���
	����Myth #9 – We have to have 2 week engineering cycles.���
	Improvements to rectify last minute un-reliable software
	References

